scholarly journals Targeted Capture and Heterologous Expression of the Pseudoalteromonas Alterochromide Gene Cluster in Escherichia coli Represents a Promising Natural Product Exploratory Platform

2014 ◽  
Vol 4 (4) ◽  
pp. 414-420 ◽  
Author(s):  
Avena C. Ross ◽  
Lauren E. S. Gulland ◽  
Pieter C. Dorrestein ◽  
Bradley S. Moore
2015 ◽  
Vol 194 ◽  
pp. 112-114 ◽  
Author(s):  
Ying Tang ◽  
Simon Frewert ◽  
Kirsten Harmrolfs ◽  
Jennifer Herrmann ◽  
Lisa Karmann ◽  
...  

2010 ◽  
Vol 76 (12) ◽  
pp. 3869-3877 ◽  
Author(s):  
Mariana Useglio ◽  
Salvador Peirú ◽  
Eduardo Rodríguez ◽  
Guillermo R. Labadie ◽  
John R. Carney ◽  
...  

ABSTRACT In vivo reconstitution of the TDP-l-megosamine pathway from the megalomicin gene cluster of Micromonospora megalomicea was accomplished by the heterologous expression of its biosynthetic genes in Escherichia coli. Mass spectrometric analysis of the TDP-sugar intermediates produced from operons containing different sets of genes showed that the production of TDP-l-megosamine from TDP-4-keto-6-deoxy-d-glucose requires only five biosynthetic steps, catalyzed by MegBVI, MegDII, MegDIII, MegDIV, and MegDV. Bioconversion studies demonstrated that the sugar transferase MegDI, along with the helper protein MegDVI, catalyzes the transfer of l-megosamine to either erythromycin C or erythromycin D, suggesting two possible routes for the production of megalomicin A. Analysis in vivo of the hydroxylation step by MegK indicated that erythromycin C is the intermediate of megalomicin A biosynthesis.


2001 ◽  
Vol 3 (13) ◽  
pp. 1981-1984 ◽  
Author(s):  
Sean F. Brady ◽  
Carol J. Chao ◽  
Jo Handelsman ◽  
Jon Clardy

2016 ◽  
Vol 82 (20) ◽  
pp. 6167-6173 ◽  
Author(s):  
Meenu Katoch ◽  
Rabia Mazmouz ◽  
Rocky Chau ◽  
Leanne A. Pearson ◽  
Russell Pickford ◽  
...  

ABSTRACTMycosporine-like amino acids (MAAs) are an important class of secondary metabolites known for their protection against UV radiation and other stress factors. Cyanobacteria produce a variety of MAAs, including shinorine, the active ingredient in many sunscreen creams. Bioinformatic analysis of the genome of the soil-dwelling cyanobacteriumCylindrospermum stagnalePCC 7417 revealed a new gene cluster with homology to MAA synthase fromNostoc punctiforme. This newly identified gene cluster is unusual because it has five biosynthesis genes (mylAtomylE), compared to the four found in other MAA gene clusters. Heterologous expression ofmylAtomylEinEscherichia coliresulted in the production of mycosporine-lysine and the novel compound mycosporine-ornithine. To our knowledge, this is the first time these compounds have been heterologously produced inE. coliand structurally characterized via direct spectral guidance. This study offers insight into the diversity, biosynthesis, and structure of cyanobacterial MAAs and highlights their amenability to heterologous production methods.IMPORTANCEMycosporine-like amino acids (MAAs) are significant from an environmental microbiological perspective as they offer microbes protection against a variety of stress factors, including UV radiation. The heterologous expression of MAAs inE. coliis also significant from a biotechnological perspective as MAAs are the active ingredient in next-generation sunscreens.


Sign in / Sign up

Export Citation Format

Share Document