Biochemical characterization and substrate specificity of the gene cluster for biosyntheses of K-252a and its analogs by in vitro heterologous expression system of Escherichia coli

2009 ◽  
Vol 5 (10) ◽  
pp. 1192 ◽  
Author(s):  
Hsien-Tai Chiu ◽  
Yu-Chin Lin ◽  
Meng-Na Lee ◽  
Yi-Lin Chen ◽  
Mei-Sin Wang ◽  
...  
2005 ◽  
Vol 71 (8) ◽  
pp. 4703-4712 ◽  
Author(s):  
Elisabete Silva ◽  
Ana Rita Marques ◽  
Arsénio Mendes Fialho ◽  
Ana Teresa Granja ◽  
Isabel Sá-Correia

ABSTRACT The commercial gelling agent gellan is a heteropolysaccharide produced by Sphingomonas elodea ATCC 31461. In this work, we carried out the biochemical characterization of the enzyme encoded by the first gene (rmlA) of the rml 4-gene cluster present in the 18-gene cluster required for gellan biosynthesis (gel cluster). Based on sequence homology, the putative rml operon is presumably involved in the biosynthesis of dTDP-rhamnose, the sugar necessary for the incorporation of rhamnose in the gellan repeating unit. Heterologous RmlA was purified as a fused His6-RmlA protein from extracts prepared from Escherichia coli IPTG (isopropyl-β-d-thiogalactopyranoside)-induced cells, and the protein was proven to exhibit dTDP-glucose pyrophosphorylase (Km of 12.0 μM for dTDP-glucose) and UDP-glucose pyrophosphorylase (Km of 229.0 μM for UDP-glucose) activities in vitro. The N-terminal region of RmlA exhibits the motif G-X-G-T-R-X2-P-X-T, which is highly conserved among bacterial XDP-sugar pyrophosphorylases. The motif E-E-K-P, with the conserved lysine residue (K163) predicted to be essential for glucose-1-phosphate binding, was observed. The S. elodea ATCC 31461 UgpG protein, encoded by the ugpG gene which maps outside the gel cluster, was previously identified as the UDP-glucose pyrophosphorylase involved in the formation of UDP-glucose, also required for gellan synthesis. In this study, we demonstrate that UgpG also exhibits dTDP-glucose pyrophosphorylase activity in vitro and compare the kinetic parameters of the two proteins for both substrates. DNA sequencing of ugpG gene-adjacent regions and sequence similarity studies suggest that this gene maps with others involved in the formation of sugar nucleotides presumably required for the biosynthesis of another cell polysaccharide(s).


2005 ◽  
Vol 386 (2) ◽  
pp. 325-330 ◽  
Author(s):  
Zheng XU ◽  
Shannon W. N. AU

SUMO (small ubiquitin-related modifier) is a member of the ubiquitin-like protein family that regulates cellular function of a variety of target proteins. SUMO proteins are expressed as their precursor forms. Cleavage of the residues after the ‘GG’ region of these precursors by SUMO-specific proteases in maturation is a prerequisite for subsequent sumoylation. To understand further this proteolytic processing, we expressed and purified SENP1 (sentrin-specific protease 1), one of the SUMO-specific proteases, using an Escherichia coli expression system. We show that SENP1 is capable of processing all SUMO-1, -2 and -3 in vitro; however, the proteolytic efficiency of SUMO-1 is the highest followed by SUMO-2 and -3. We demonstrate further that the catalytic domain of SENP1 (SENP1C) alone can determine the substrate specificity towards SUMO-1, -2 and -3. Replacement of the C-terminal fragments after the ‘GG’ region of SUMO-1 and -2 precursors with that of the SUMO-3, indicates that the C-terminal fragment is essential for efficient maturation. In mutagenesis analysis, we further map two residues immediately after the ‘GG’ region, which determine the differential maturation. Distinct patterns of tissue distribution of SENP1, SUMO-1, -2 and -3 are characterized. Taken together, we suggest that the observed differential maturation process has its physiological significance in the regulation of the sumoylation pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


2007 ◽  
Vol 282 (46) ◽  
pp. 33326-33335 ◽  
Author(s):  
David Corbett ◽  
Hayley J. Bennett ◽  
Hamdia Askar ◽  
Jeffrey Green ◽  
Ian S. Roberts

In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kian-Hong Ng ◽  
Vinayaka Srinivas ◽  
Ramanujam Srinivasan ◽  
Mohan Balasubramanian

Euryarchaeota and Crenarchaeota are two major phyla of archaea which use distinct molecular apparatuses for cell division. Euryarchaea make use of the tubulin-related protein FtsZ, while Crenarchaea, which appear to lack functional FtsZ, employ the Cdv (cell division) components to divide. Ammonia oxidizing archaeon (AOA)Nitrosopumilus maritimusbelongs to another archaeal phylum, the Thaumarchaeota, which has both FtsZ and Cdv genes in the genome. Here, we used a heterologous expression system to characterize FtsZ and Cdv proteins fromN. maritimusby investigating the ability of these proteins to form polymers. We show that one of the Cdv proteins inN. maritimus, the CdvB (Nmar_0816), is capable of forming stable polymers when expressed in fission yeast. TheN. maritimusCdvB is also capable of assembling into filaments in mammalian cells. However,N. maritimusFtsZ does not assemble into polymers in our system. The ability of CdvB, but not FtsZ, to polymerize is consistent with a recent finding showing that several Cdv proteins, but not FtsZ, localize to the mid-cell site in the dividingN. maritimus. Thus, we propose that it is Cdv proteins, rather than FtsZ, that function as the cell division apparatus inN. maritimus.


2015 ◽  
Vol 194 ◽  
pp. 112-114 ◽  
Author(s):  
Ying Tang ◽  
Simon Frewert ◽  
Kirsten Harmrolfs ◽  
Jennifer Herrmann ◽  
Lisa Karmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document