scholarly journals Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia coli

2016 ◽  
Vol 82 (20) ◽  
pp. 6167-6173 ◽  
Author(s):  
Meenu Katoch ◽  
Rabia Mazmouz ◽  
Rocky Chau ◽  
Leanne A. Pearson ◽  
Russell Pickford ◽  
...  

ABSTRACTMycosporine-like amino acids (MAAs) are an important class of secondary metabolites known for their protection against UV radiation and other stress factors. Cyanobacteria produce a variety of MAAs, including shinorine, the active ingredient in many sunscreen creams. Bioinformatic analysis of the genome of the soil-dwelling cyanobacteriumCylindrospermum stagnalePCC 7417 revealed a new gene cluster with homology to MAA synthase fromNostoc punctiforme. This newly identified gene cluster is unusual because it has five biosynthesis genes (mylAtomylE), compared to the four found in other MAA gene clusters. Heterologous expression ofmylAtomylEinEscherichia coliresulted in the production of mycosporine-lysine and the novel compound mycosporine-ornithine. To our knowledge, this is the first time these compounds have been heterologously produced inE. coliand structurally characterized via direct spectral guidance. This study offers insight into the diversity, biosynthesis, and structure of cyanobacterial MAAs and highlights their amenability to heterologous production methods.IMPORTANCEMycosporine-like amino acids (MAAs) are significant from an environmental microbiological perspective as they offer microbes protection against a variety of stress factors, including UV radiation. The heterologous expression of MAAs inE. coliis also significant from a biotechnological perspective as MAAs are the active ingredient in next-generation sunscreens.

2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Yannick R. Brunet ◽  
Christophe S. Bernard ◽  
Eric Cascales

ABSTRACT The type VI secretion system (T6SS) is a weapon for delivering effectors into target cells that is widespread in Gram-negative bacteria. The T6SS is a highly versatile machine, as it can target both eukaryotic and prokaryotic cells, and it has been proposed that T6SSs are adapted to the specific needs of each bacterium. The expression of T6SS gene clusters and the activation of the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli (EAEC), the sci1 T6SS gene cluster is subject to a complex regulation involving both the ferric uptake regulator (Fur) and DNA adenine methylase (Dam)-dependent DNA methylation. In this study, an additional, internal, promoter was identified within the sci1 gene cluster using +1 transcriptional mapping. Further analyses demonstrated that this internal promoter is controlled by a mechanism strictly identical to that of the main promoter. The Fur binding box overlaps the −10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by an in vitro methylation assay. In addition, the methylation of GATC-32 negatively impacted Fur binding. The expression of the sci1 internal promoter is therefore controlled by iron availability through Fur regulation, whereas Dam-dependent methylation maintains a stable ON expression in iron-limited conditions. IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Its expression and activation therefore need to be tightly regulated. Here, we identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. We show that this internal promoter is controlled by Fur and Dam-dependent methylation. We further demonstrate that Fur and Dam compete at the −10 transcriptional element to finely tune the expression of T6SS genes. We propose that this elegant regulatory mechanism allows the optimum production of the T6SS in conditions where enteroaggregative E. coli encounters competing species.


2012 ◽  
Vol 78 (9) ◽  
pp. 3442-3457 ◽  
Author(s):  
Michael S. Schwalbach ◽  
David H. Keating ◽  
Mary Tremaine ◽  
Wesley D. Marner ◽  
Yaoping Zhang ◽  
...  

ABSTRACTThe physiology of ethanologenicEscherichia coligrown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into howE. coliresponds to such hydrolysates, we studied anE. coliK-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate,E. coliceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.


2013 ◽  
Vol 58 (2) ◽  
pp. 923-930 ◽  
Author(s):  
Sujeet Kumar ◽  
William T. Doerrler

ABSTRACTBacterial resistance to antibiotics and biocides is an increasing public health problem. Genes encoding integral membrane proteins belonging to the DedA family are present in most bacterial genomes, includingEscherichia coli. AnE. colistrain lacking partially redundant DedA family genesyqjAandyghB(strain BC202) displays temperature sensitivity and cell division defects. These phenotypes can be corrected by overexpression ofmdfA, an Na+-K+/H+antiporter of the major facilitator superfamily. We show that BC202 is hypersensitive to several biocides and cationic compounds that are known substrates of several multidrug resistance transporters, including MdfA, EmrE, and AcrB. The introduction of deletions of genes encoding these drug transporters into BC202 results in additional sensitivity. Expression of wild-typeyghBoryqjAcan restore drug resistance, but this is eliminated upon mutation of two membrane-embedded acidic amino acids (E39 or D51 in either protein). This dependence upon membrane-embedded acidic amino acids is a hallmark of proton-dependent antiporters. Overexpression ofmdfAin BC202 or artificially restoring proton motive force (PMF) restores wild-type resistance to substrates of MdfA as well as other drug resistance transporters such as EmrE and AcrAB. These results suggest that YqjA and YghB may be membrane transporters required for PMF-dependent drug efflux inE. coli.


2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Eleni Vikeli ◽  
David A. Widdick ◽  
Sibyl F. D. Batey ◽  
Daniel Heine ◽  
Neil A. Holmes ◽  
...  

ABSTRACT Most clinical antibiotics are derived from actinomycete natural products discovered at least 60 years ago. However, the repeated rediscovery of known compounds led the pharmaceutical industry to largely discard microbial natural products (NPs) as a source of new chemical diversity. Recent advances in genome sequencing have revealed that these organisms have the potential to make many more NPs than previously thought. Approaches to unlock NP biosynthesis by genetic manipulation of strains, by the application of chemical genetics, or by microbial cocultivation have resulted in the identification of new antibacterial compounds. Concomitantly, intensive exploration of coevolved ecological niches, such as insect-microbe defensive symbioses, has revealed these to be a rich source of chemical novelty. Here, we report the new lanthipeptide antibiotic kyamicin, which was generated through the activation of a cryptic biosynthetic gene cluster identified by genome mining Saccharopolyspora species found in the obligate domatium-dwelling ant Tetraponera penzigi of the ant plant Vachellia drepanolobium. Transcriptional activation of this silent gene cluster was achieved by ectopic expression of a pathway-specific activator under the control of a constitutive promoter. Subsequently, a heterologous production platform was developed which enabled the purification of kyamicin for structural characterization and bioactivity determination. This strategy was also successful for the production of lantibiotics from other genera, paving the way for a synthetic heterologous expression platform for the discovery of lanthipeptides that are not detected under laboratory conditions or that are new to nature. IMPORTANCE The discovery of novel antibiotics to tackle the growing threat of antimicrobial resistance is impeded by difficulties in accessing the full biosynthetic potential of microorganisms. The development of new tools to unlock the biosynthesis of cryptic bacterial natural products will greatly increase the repertoire of natural product scaffolds. Here, we report a strategy for the ectopic expression of pathway-specific positive regulators that can be rapidly applied to activate the biosynthesis of cryptic lanthipeptide biosynthetic gene clusters. This allowed the discovery of a new lanthipeptide antibiotic directly from the native host and via heterologous expression.


2015 ◽  
Vol 60 (1) ◽  
pp. 686-688 ◽  
Author(s):  
Karla de Oliveira Pelegrino ◽  
Juliana Coutinho Campos ◽  
Suely Carlos Ferreira Sampaio ◽  
Karina Lezirovitz ◽  
Bruna Mara Seco ◽  
...  

ABSTRACTIn this work, we demonstrate that thefosIgene encodes a predicted small protein with 134 amino acids and determines reduced susceptibility to fosfomycin. It raised the MIC from 0.125 to 6 μg/ml when the pBRA100 plasmid was introduced intoEscherichia coliTOP10 and to 16 μg/ml when the gene was cloned into the pBC_SK(−) vector and expressed inE. coliTOP10.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Yidan Zhou ◽  
James A. Imlay

ABSTRACT The most direct route by which microbes might assimilate sulfur would be by importing cysteine. However, alone among the amino acids, cysteine does not have well-characterized importers. We determined that Escherichia coli can rapidly import cysteine, but in our experiments, it did so primarily through the LIV ATP-driven system that is dedicated to branched-chain amino acids. The affinity of this system for cysteine is far lower than for Leu, Ile, and Val, and so in their presence, cysteine is excluded. Thus, this transport is unlikely to be relevant in natural environments. Growth studies, transcriptomics, and transport assays failed to detect any high-affinity importer that is dedicated to cysteine assimilation. Enteric bacteria do not contain the putative cysteine importer that was identified in Campylobacter jejuni. This situation is surprising, because E. coli deploys ion- and/or ATP-driven transporters that import cystine, the oxidized form of cysteine, with high affinity and specificity. We conjecture that in oxic environments, molecular oxygen oxidizes environmental cysteine to cystine, which E. coli imports. In anoxic environments where cysteine is stable, the cell chooses to assimilate hydrogen sulfide instead. Calculations suggest that this alternative is almost as economical, and it avoids the toxic effects that can result when excess cysteine enters the cell. IMPORTANCE This investigation discovered that Escherichia coli lacks a transporter dedicated to the assimilation of cysteine, an outcome that is in striking contrast to the many transporters devoted to the other 19 amino acids. We ascribe the lack of a high-affinity cysteine importer to two considerations. First, the chemical reactivity of this amino acid is unique, and its poorly controlled import can have adverse consequences for the cell. Second, our analysis suggests that the economics of biosynthesis depend sharply upon whether the cell is respiring or fermenting. In the anoxic habitats in which cysteine might be found, the value of import versus biosynthesis is strongly reduced compared to that in oxic habitats. These studies may explain why bacteria choose to synthesize rather than to import other useful biomolecules as well.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Aurora Garcia-Fernandez ◽  
Laura Villa ◽  
Giulia Bibbolino ◽  
Alessia Bressan ◽  
Maria Trancassini ◽  
...  

ABSTRACT Escherichia coli sequence type 167 (ST167), producing the metallo beta-lactamase NDM-5, has been isolated as a colonizer of patients recovered at the University Hospital Policlinico Umberto I of Rome. Phylogenesis and comparative analysis of the genomes of these strains were performed against 343 ST167 genomes available from the EnteroBase database. These analyses revealed that resistance plasmids, integrative conjugative elements (ICEs), carrying the yersiniabactin virulence trait and capsular synthesis gene clusters had variable compositions and distributions within different strains of the ST167 clone. A novel capsular synthesis gene cluster, highly similar to the K48 cluster previously described only for Klebsiella pneumoniae, was identified in phylogenetically related strains of the ST167 clone. IMPORTANCE Global dissemination of some E. coli high-risk clones has been described in the last decades. The most widespread was the ST131 clone, associated with extended-spectrum-beta-lactamase (ESBL) production. Genomics of ST131 demonstrated that one clade within the ST emerged in the early 2000s, followed by a rapid, global expansion. The E. coli ST167 clone is emerging throughout the world, being frequently reported for its association with carbapenem resistance. Our study shows that virulence features are differently represented within the ST167 population. One clade shows the K48 capsular synthesis gene cluster of K. pneumoniae, not previously described for E. coli, and is populated by NDM-5-producing strains. The combination of resistance and virulence may sustain the global expansion of this specific ST167 clade.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Mengyong Xiao ◽  
Xinna Zhu ◽  
Feiyu Fan ◽  
Hongtao Xu ◽  
Jinlei Tang ◽  
...  

ABSTRACT Improvement in the osmotolerance of Escherichia coli is essential for the production of high titers of various bioproducts. In this work, a cusS mutation that was identified in the previously constructed high-succinate-producing E. coli strain HX024 was investigated for its effect on osmotolerance. CusS is part of the two-component system CusSR that protects cells from Ag(I) and Cu(I) toxicity. Changing cusS from strain HX024 back to its original sequence led to a 24% decrease in cell mass and succinate titer under osmotic stress (12% glucose). When cultivated with a high initial glucose concentration (12%), introduction of the cusS mutation into parental strain Suc-T110 led to a 21% increase in cell mass and a 40% increase in succinate titer. When the medium was supplemented with 30 g/liter disodium succinate, the cusS mutation led to a 120% increase in cell mass and a 492% increase in succinate titer. Introducing the cusS mutation into the wild-type strain ATCC 8739 led to increases in cell mass of 87% with 20% glucose and 36% using 30 g/liter disodium succinate. The cusS mutation increased the expression of cusCFBA, and gene expression levels were found to be positively related to osmotolerance abilities. Because high osmotic stress has been associated with deleterious accumulation of Cu(I) in the periplasm, activation of CusCFBA may alleviate this effect by transporting Cu(I) out of the cells. This hypothesis was confirmed by supplementing sulfur-containing amino acids that can chelate Cu(I). Adding methionine or cysteine to the medium increased the osmotolerance of E. coli under anaerobic conditions. IMPORTANCE In this work, an activating Cus copper efflux system was found to increase the osmotolerance of E. coli. In addition, new osmoprotectants were identified. Supplementation with methionine or cysteine led to an increase in osmotolerance of E. coli under anaerobic conditions. These new strategies for improving osmotolerance will be useful for improving the production of chemicals in industrial bioprocesses.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


2012 ◽  
Vol 78 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Dongfei Han ◽  
Ji-Young Ryu ◽  
Robert A. Kanaly ◽  
Hor-Gil Hur

ABSTRACTA plasmid, pTA163, inEscherichia colicontained an approximately 34-kb gene fragment fromPseudomonas putidaJYR-1 that included the genes responsible for the metabolism oftrans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyzetrans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter inE. colicatalyzed oxidative cleavage of a propenyl group oftrans-anethole to an aldehyde group, resulting in the production ofpara-anisaldehyde, and this gene was designatedtao(trans-anetholeoxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein ofAgrobacterium vitisS4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water intop-anisaldehyde using18O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase fromPseudomonas putidaIE27 andPseudomonas nitroreducensJin1, TAO fromP. putidaJYR-1 catalyzed isoeugenol,O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts ofE. coli(pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


Sign in / Sign up

Export Citation Format

Share Document