pH effects on oxidative modification of alkylative DNA adducts by the AlkB-family enzymes

Author(s):  
Samuel Howarth ◽  
Vincent Falkowski ◽  
Xin Bush ◽  
Rui Qi ◽  
Deyu Li ◽  
...  
2008 ◽  
Vol 46 (01) ◽  
Author(s):  
Y Wang ◽  
J Nair ◽  
S Mueller ◽  
F Stickel ◽  
H Bartsch ◽  
...  

2020 ◽  
Vol 33 (1) ◽  
pp. 38-44
Author(s):  
Alona Yurchenko ◽  
Daryna Krenytska ◽  
Olexii Savchuk ◽  
Tetiana Halenova ◽  
Natalia Raksha ◽  
...  

AbstractOur interest has focused on the investigation of the anti-obese potential of kidney beans (P. vulgaris) pods extract. In the course of the study, obesity development in rats was induced with high-calorie diet. Control and obese rats then have consumed with aqueous kidney beans (P. vulgaris) pods extract during 6 weeks (200 mg/kg). Results show that the long-term consumption of P. vulgaris pods extract can lead to the reduction of hyperglycemia and insulin resistance development. Furthermore, we saw a normalization of lipid peroxidation parameters and oxidative modification of protein due to the consumption of the kidney beans (P. vulgaris) pods extract. Our experimental data demonstrate the ability of the kidney beans (P. vulgaris) pod extracts to mitigate obesity development but the details of this mechanism remains to be not fully understood.


2019 ◽  
Author(s):  
Adrian Roitberg ◽  
Pancham Lal Gupta

<div>Human Glycinamide ribonucleotide transformylase (GAR Tfase), a regulatory enzyme in the de novo purine biosynthesis pathway, has been established as an anti-cancer target. GAR Tfase catalyzes the formyl transfer reaction from the folate cofactor to the GAR ligand. In the present work, we study E. coli GAR Tfase, which has high sequence similarity with the human GAR Tfase with most functional residues conserved. E. coli GAR Tfase exhibits structural changes and the binding of ligands that varies with pH which leads to change the rate of the formyl transfer reaction in a pH-dependent manner. Thus, the inclusion of pH becomes essential for the study of its catalytic mechanism. Experimentally, the pH-dependence of the kinetic parameter kcat is measured to evaluate the pH-range of enzymatic activity. However, insufficient information about residues governing the pH-effects on the catalytic activity leads to ambiguous assignments of the general acid and base catalysts and consequently its catalytic mechanism. In the present work, we use pH-replica exchange molecular dynamics (pH-REMD) simulations to study the effects of pH on E. coli GAR Tfase enzyme. We identify the titratable residues governing the pH-dependent conformational changes in the system. Furthermore, we filter out the protonation states which are essential in maintaining the structural integrity, keeping the ligands bound and assisting the catalysis. We reproduce the experimental pH-activity curve by computing the population of key protonation states. Moreover, we provide a detailed description of residues governing the acidic and basic limbs of the pH-activity curve.</div>


Sign in / Sign up

Export Citation Format

Share Document