Understanding the Carbon Balance and pH effects in CO2 Electrolysis Devices

Author(s):  
Brian Seger ◽  
Ming Ma ◽  
Gaston Larrazabal
1998 ◽  
Vol 4 (5) ◽  
pp. 523-538 ◽  
Author(s):  
NIALL P. HANAN ◽  
PAVEL KABAT ◽  
JOHANNES A. DOLMAN ◽  
JAN A. ELBERS
Keyword(s):  

2019 ◽  
Author(s):  
Adrian Roitberg ◽  
Pancham Lal Gupta

<div>Human Glycinamide ribonucleotide transformylase (GAR Tfase), a regulatory enzyme in the de novo purine biosynthesis pathway, has been established as an anti-cancer target. GAR Tfase catalyzes the formyl transfer reaction from the folate cofactor to the GAR ligand. In the present work, we study E. coli GAR Tfase, which has high sequence similarity with the human GAR Tfase with most functional residues conserved. E. coli GAR Tfase exhibits structural changes and the binding of ligands that varies with pH which leads to change the rate of the formyl transfer reaction in a pH-dependent manner. Thus, the inclusion of pH becomes essential for the study of its catalytic mechanism. Experimentally, the pH-dependence of the kinetic parameter kcat is measured to evaluate the pH-range of enzymatic activity. However, insufficient information about residues governing the pH-effects on the catalytic activity leads to ambiguous assignments of the general acid and base catalysts and consequently its catalytic mechanism. In the present work, we use pH-replica exchange molecular dynamics (pH-REMD) simulations to study the effects of pH on E. coli GAR Tfase enzyme. We identify the titratable residues governing the pH-dependent conformational changes in the system. Furthermore, we filter out the protonation states which are essential in maintaining the structural integrity, keeping the ligands bound and assisting the catalysis. We reproduce the experimental pH-activity curve by computing the population of key protonation states. Moreover, we provide a detailed description of residues governing the acidic and basic limbs of the pH-activity curve.</div>


2005 ◽  
Vol 156 (11) ◽  
pp. 438-441
Author(s):  
Arbeitsgruppe Wald- und ◽  
Holzwirtschaft im Klimaschutz

With the ratification of the Kyoto Protocol aimed at reducing greenhouse gases, Switzerland is committed to reducing CO2emissions by 4.2 million tonnes by 2008. The forests in Switzerland could contribute to the country's national carbon balance with maximum 1.8 million tonnes reduction of CO2. With an increased use of the forest the emissions could be reduced by up to 2 million tonnes by the substitution of other materials. With a targeted forest management policy carbon sink reduction and the substitution value of the forest could be balanced against one another. In the framework of climate policy the Federal government should create the legal and organisational conditions for this.


Tellus B ◽  
2007 ◽  
Vol 59 (5) ◽  
Author(s):  
Brynhildur Bjarnadottir ◽  
Bjarni D. Sigurdsson ◽  
Anders Lindroth

Tellus B ◽  
2010 ◽  
Vol 62 (5) ◽  
Author(s):  
J. M. Metsaranta ◽  
W. A. Kurz ◽  
E. T. Neilson ◽  
G. Stinson

2020 ◽  
Vol 46 (7) ◽  
pp. 1063-1075
Author(s):  
Peng YAN ◽  
Yan-Li XU ◽  
Qi WANG ◽  
Feng-Lu ZHANG ◽  
Rui-Jie LI ◽  
...  

Author(s):  
Karen Cacua ◽  
Fredy Ordoñez ◽  
Camilo Zapata ◽  
Bernardo Herrera ◽  
Elizabeth Pabón ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document