scholarly journals Biological and Molecular Mechanisms of Sulfur Mustard Analogue-Induced Toxicity in JB6 and HaCaT Cells: Possible Role of Ataxia Telangiectasia-Mutated/Ataxia Telangiectasia-Rad3-Related Cell Cycle Checkpoint Pathway

2010 ◽  
Vol 23 (6) ◽  
pp. 1034-1044 ◽  
Author(s):  
Neera Tewari-Singh ◽  
Mallikarjuna Gu ◽  
Chapla Agarwal ◽  
Carl W. White ◽  
Rajesh Agarwal
Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1370
Author(s):  
Atsushi Shibata ◽  
Penny A. Jeggo

Ataxia telangiectasia mutated (ATM) is a central kinase that activates an extensive network of responses to cellular stress via a signaling role. ATM is activated by DNA double strand breaks (DSBs) and by oxidative stress, subsequently phosphorylating a plethora of target proteins. In the last several decades, newly developed molecular biological techniques have uncovered multiple roles of ATM in response to DNA damage—e.g., DSB repair, cell cycle checkpoint arrest, apoptosis, and transcription arrest. Combinational dysfunction of these stress responses impairs the accuracy of repair, consequently leading to dramatic sensitivity to ionizing radiation (IR) in ataxia telangiectasia (A-T) cells. In this review, we summarize the roles of ATM that focus on DSB repair.


Author(s):  
Venturina Stagni ◽  
Alessandra Ferri ◽  
Claudia Cirotti ◽  
Daniela Barilà

Increasing evidence suggests a strong interplay between autophagy and genomic stability. Recently, several papers have demonstrated a molecular connection between the DNA Damage Response (DDR) and autophagy and have explored how this link influences cell fate and the choice between apoptosis and senescence in response to different stimuli. The aberrant deregulation of this interplay is linked to the development of pathologies, including cancer and neurodegeneration. Ataxia-telangiectasia mutated kinase (ATM) is the product of a gene that is lost in Ataxia-Telangiectasia (A-T), a rare genetic disorder characterized by ataxia and cerebellar neurodegeneration, defects in the immune response, higher incidence of lymphoma development, and premature aging. Importantly, ATM kinase plays a central role in the DDR, and it can finely tune the balance between senescence and apoptosis: activated ATM promotes autophagy and in particular sustains the lysosomal-mitochondrial axis, which in turn promotes senescence and inhibits apoptosis. Therefore, ATM is the key factor that enables cells to escape apoptosis by entering senescence through modulation of autophagy. Importantly, unlike apoptotic cells, senescent cells are viable and have the ability to secrete proinflammatory and mitogenic factors, thus influencing the cellular environment. In this review we aim to summarize recent advances in the understanding of molecular mechanisms linking DDR and autophagy to senescence, pointing out the role of ATM kinase in these cellular responses. The significance of this regulation in the pathogenesis of Ataxia-Telangiectasia will be discussed.


Cell ◽  
1992 ◽  
Vol 71 (4) ◽  
pp. 587-597 ◽  
Author(s):  
Michael B. Kastan ◽  
Qimin Zhan ◽  
Wafik S. El-Deiry ◽  
France Carrier ◽  
Tyler Jacks ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Massimo Pancione ◽  
Luigi Cerulo ◽  
Andrea Remo ◽  
Guido Giordano ◽  
Álvaro Gutierrez-Uzquiza ◽  
...  

Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare genetic disorders suggest that centrosome dysfunction alters the cellular microenvironment through Rho GTPases, p38, and JNK (c-Jun N-terminal Kinase)-dependent signaling in a way that is favorable for pro-invasive secretory phenotypes and aneuploidy tolerance. We here review recent data on how centrosomes act as complex molecular platforms for Rho GTPases and p38 MAPK (Mitogen activated kinase) signaling at the crossroads of CIN, cytoskeleton remodeling, and immune evasion via both cell-autonomous and non-autonomous mechanisms.


2008 ◽  
Vol 7 (10) ◽  
pp. 1712-1723 ◽  
Author(s):  
Karen E. Kirk ◽  
Christina Christ ◽  
Jennifer M. McGuire ◽  
Arun G. Paul ◽  
Mithaq Vahedi ◽  
...  

ABSTRACT Telomere mutants have been well studied with respect to telomerase and the role of telomere binding proteins, but they have not been used to explore how a downstream morphogenic event is related to the mutated telomeric DNA. We report that alterations at the telomeres can have profound consequences on organellar morphogenesis. Specifically, a telomerase RNA mutation termed ter1-43AA results in the loss of germ line micronuclear telomeres in the binucleate protozoan Tetrahymena thermophila. These cells also display a micronuclear mitotic arrest, characterized by an extreme delay in anaphase with an elongated, condensed chromatin and a mitotic spindle apparatus. This anaphase defect suggests telomere fusions and consequently a spindle rather than a DNA damage checkpoint. Most surprisingly, these mutants exhibit unique, dramatic defects in the formation of the cell's oral apparatus. We suggest that micronuclear telomere loss leads to a “dynamic pause” in the program of cortical development, which may reveal an unusual cell cycle checkpoint.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Xiaohan Zhou ◽  
Jialing Zheng ◽  
Ying Tang ◽  
Yanling lin ◽  
Lingzhi Wang ◽  
...  

Abstract Resistance to radiotherapy is one of the main causes of treatment failure in patients with nasopharyngeal carcinoma (NPC). Epstein-Barr virus (EBV) infection is an important factor in the pathogenesis of NPC, and EBV-encoded microRNAs (miRNAs) promote NPC progression. However, the role of EBV-encoded miRNAs in the radiosensitivity of NPC remains unclear. Here, we investigated the effects of EBV-miR-BART8-3p on radiotherapy resistance in NPC cells in vitro and in vivo, and explored the underlying molecular mechanisms. Inhibitors of ataxia telangiectasia mutated (ATM)/ataxia telangiectasia mutated and Rad3-related (ATR) (KU60019 and AZD6738, respectively) were used to examine radiotherapy resistance. We proved that EBV-miR-BART8-3p promoted NPC cell proliferation in response to irradiation in vitro and associated with the induction of cell cycle arrest at the G2/M phase, which was a positive factor for the DNA repair after radiation treatment. Besides, EBV-miR-BART8-3p could increase the size of xenograft tumors significantly in nude mice. Treatment with KU60019 or AZD6738 increased the radiosensitivity of NPC by suppressing the expression of p-ATM and p-ATR. The present results indicate that EBV-miR-BART8-3p promotes radioresistance in NPC by modulating the activity of ATM/ATR signaling pathway.


2006 ◽  
Vol 11 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Vladic Mogila ◽  
Fan Xia ◽  
Willis X. Li

Biochimie ◽  
1995 ◽  
Vol 77 (6) ◽  
pp. 462-465 ◽  
Author(s):  
M. Masutani ◽  
T. Nozaki ◽  
K. Wakabayashi ◽  
T. Sugimura

Sign in / Sign up

Export Citation Format

Share Document