Geostrophic Wind, Gradient Wind, Thermal Wind And The Vertical Wind Profile – A Sample Analysis Within A Planetary Boundary Layer Over Arctic Sea-Ice

1999 ◽  
Vol 92 (2) ◽  
pp. 327-339 ◽  
Author(s):  
R. Roth ◽  
M. Hofmann ◽  
C. Wode
2011 ◽  
Vol 5 (3) ◽  
pp. 1311-1334 ◽  
Author(s):  
L. H. Smedsrud ◽  
A. Sirevaag ◽  
K. Kloster ◽  
A. Sorteberg ◽  
S. Sandven

Abstract. Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79&deg N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s−1, and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.


2011 ◽  
Vol 5 (4) ◽  
pp. 821-829 ◽  
Author(s):  
L. H. Smedsrud ◽  
A. Sirevaag ◽  
K. Kloster ◽  
A. Sorteberg ◽  
S. Sandven

Abstract. Arctic sea ice area has been decreasing for the past two decades. Apart from melting, the southward drift through Fram Strait is the main ice loss mechanism. We present high resolution sea ice drift data across 79° N from 2004 to 2010. Ice drift has been derived from radar satellite data and corresponds well with variability in local geostrophic wind. The underlying East Greenland current contributes with a constant southward speed close to 5 cm s−1, and drives around a third of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25% larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice area export likely has a significant influence on the summer sea ice variability and we find low values in the 1960's, the late 1980's and 1990's, and particularly high values during 2005–2008. The study highlights the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice during the last decades.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 591
Author(s):  
Dmitry Chechin

A relationship between the friction velocity u☆ and mean wind speed U in a stable atmospheric boundary layer (ABL) over Arctic sea ice was considered. To that aim, the observations collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment were used. The observations showed the so-called “hockey-stick” shape of the u☆−U relationship, which consists of a slow increase of u☆ with increasing wind speed for U<Utr and a more rapid almost linear increase of u☆ for U>Utr, where Utr is the wind speed of transition between the two regimes. Such a relationship is most pronounced at the highest observational levels, namely at 9 and 14 m, and is also sharper when the air-surface temperature difference exceeds its average values for stable conditions. It is shown that the Monin–Obukhov similarity theory (MOST) reproduces the observed u☆−U relationship rather well. This suggests that at least for the SHEBA dataset, there is no contradiction between MOST and the “hockey-stick” shape of the u☆−U relationship. However, the SHEBA data, as well as the single-column simulations show that for cases with strong stability, u☆ significantly decreases with height due to the shallowness of the ABL. It was shown that when u☆ was assumed independent of height, the value of the normalized drag coefficient, i.e., of the so-called stability correction function for momentum, calculated using observations at a certain level, can be significantly underestimated. To overcome this, the decrease of u☆ with height was taken into account in the framework of MOST using local scaling instead of the scaling with surface fluxes. Using such an extended MOST brought the estimates of the normalized drag coefficient closer to the Businger–Dyer relation.


1994 ◽  
Vol 68 (1-2) ◽  
pp. 75-108 ◽  
Author(s):  
Burghard Brümmer ◽  
Birgit Busack ◽  
Heinrich Hoeber ◽  
Gottfried Kruspe

2021 ◽  
Author(s):  
Zheng Liu ◽  
Axel Schweiger

Abstract The effect of leads in Arctic sea ice on clouds is a potentially important climate feedback. We use observations of clouds and leads from the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) to study the effects of leads on clouds. Newly open leads increase cloudiness while newly frozen leads decrease cloudiness. The latter dominates but the magnitude of the net effect depends on the life cycle of leads. The cloud dissipating effect decrease the Arctic cloudiness by 4-6% in cold months. The cloud increasing effect of open leads is evident in areas with strong sea ice deformation and frequent lead formation. Lead effects can reach beyond the boundary layer to 6 km. The lack of proper representation of lead effect on clouds in current climate models and reanalyses contributes to the overestimation of cloudiness over Arctic sea ice in cold months.


Sign in / Sign up

Export Citation Format

Share Document