Ligand Binding Characteristics of a Glycosylphosphatidyl Inositol Membrane-Anchored HeLa Cell Folate Receptor Epitope-Related to Human Milk Folate Binding Protein

2000 ◽  
Vol 20 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen ◽  
Lars Korsbaek ◽  
Heidi Beckmann ◽  
...  

The folate receptor (FR) in HeLa cells was characterized as to ligandbinding mechanism, antigenic properties and membrane anchor in order toobtain information to be used for the design of biological agentstargeting FR in malignant tumors. The receptor displayed the followingbinding characteristics in equilibrium dialysis experiments(37°C, pH 7.4) with [3H] folate: a high-affinity type of bindingthat exhibited positive cooperativity with a Hill coefficient >1.0and an upward convex Scatchard plot, a slow radioligand dissociation atpH 7.4 becoming rapid at pH 3.5 and inhibition in the presence of otherfolates. The molecular size of the receptor was 100 kDa on gel filtrationwith Triton X-100, or similar to that of high molecular weight human milkfolate binding protein (FBP). The latter protein represents a 25 kDamolecule which equipped with a hydrophobic glycosylphosphatidylinositol (GPI) membrane anchor susceptible to cleavage byphosphatidylinositol specific phospholipase C (PI-PLC) formsmicelles of 100 kDa size with Triton X-100. The HeLa cell FRimmunoreacted with antibodies against purified human milk FBP inELISA, and in a fluorescence activated cell sorting system, whereHeLa cells exposed to increasing concentrations of antibody showed adose-dependent response. Exposure to PI-PLC decreased the fraction ofimmunolabeled cells indicating a linkage of FR to cell membranes by aGPI anchor. HeLa cells incubated with radiofolate showed a continuousuptake with time, however, with a complete suppression of uptake in thepresence of an excess of cold folate. Prewash of cells at acidic pH toremove endogenous folate increased the uptake. Binding and uptake of [3H]folate was increased in cells grown in a folate-deprived medium. The HeLaFR seems to be epitope related to human milk FBP.

1999 ◽  
Vol 19 (6) ◽  
pp. 571-580 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen ◽  
Thomas Broe Christensen ◽  
Carl W. Nichols

We have characterized the folate receptor in normal and malignant tissue from male gonads. Radioligand binding displayed characteristics typical of other folate receptors. Those included a high-affinity type of binding (K = 1010 M−1), apparent positive cooperativity changing into non-cooperativity at low receptor concentrations, a tendency to increased binding affinity with decreasing receptor concentrations, a slow dissociation at pH 7.4 becoming rapid at pH 3.5 and inhibition by folates, in particular oxidized forms. The gel filtration profile of Triton X-100 solubilized tissue contained a 25 and 100 kDa peak of radioligand-receptor. The latter peak could represent receptor equipped with a hydrophobic membrane anchor that inserts into Triton X-100 micelles. The concentration of radiolabelled receptor ranged from 0.41 nmol/g protein to 1.68 nmol/g protein in specimens of normal testicular tissue from patients with prostatic carcinomas and from 1.54 nmol/g protein to 3.82 nmol/g protein in testicular tissue from young individuals. Compared to normal testicular tissue the concentration of receptor in seminoma tissue was low (0.38–1.27 nmol/g protein) but showed a higher degree of immunoreactivity in the presence of antibodies against human milk folate binding protein as evidenced by ELISA and immunohistochemistry data. Hence a folate receptor isoform homologous to human milk folate binding protein is apparently expressed in seminomas where the total expression of receptor, however, seems to be lower than in normal testicles.


1992 ◽  
Vol 12 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Steen Ingemann Hansen ◽  
Jan Holm

Gel filtration studies in the presence of Triton X-100 showed that treatment with phosphatidylinositol-specific phospholipase C reduced the apparent molecular size of the 100 kDa folate binding protein from human milk, choroid plexus and semen to 25 kDa. Cleavage of a hydrophobic glycosly phosphatidylinositol domain (a membrane anchor) inserting the protein into Triton X-100 micelles could account for this phenomenon.


1993 ◽  
Vol 13 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen

Binding of 3H-folate in Triton X-100 solubilized human prostate homogenate was of a high-affinity type and displayed apparent positive cooperativity typical of specific folate binding. Radioligand dissociation was slow at pH 7.4, but rapid at pH 3.5. Gel chromatography reveled two major folate binding proteins (Mr≈100 and 25kDa), but only one single band (Mr ≈ 65–70 kDa) was detectable on SDS-PAGE and immunoblotting with rabbit-anti human milk folate binding protein. Concentration of folate binding protein in prostate homogenate expressed as maximum 3H-folate binding was 1.10 nmol/g protein, and the cross-reactivity with rabbit-anti human milk folate binding protein serum was 15% as determined by an enzyme-linked immunosorbent assay (median values; n = 6).


2002 ◽  
Vol 22 (3-4) ◽  
pp. 455-463 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen

Two molecular forms of the folate binding protein were isolated and purified from human milk by a combination of cation exchange- and affinity chromatography. One protein (27 kDa) was a cleavage product of the other 100 kDa protein as evidenced by N-terminal amino acid sequence homology and a reduction in the molecular size of the latter protein to 27 kDa after cleavage of its hydrophobic glycosylphosphatidylinositol tail by phosphatidylinositol-specific phospholipase C. High-affinity binding of [3H]folate was characterized by upward convex Scatchard plots and increasing ligand binding affinity with decreasing concentrations of both proteins. Downward convex Scatchard plots and binding affinities showing no dependence on the protein concentration were, however, observed in highly diluted solutions of both proteins. Radioligand binding was inhibited by folate analogs, and dissociation of radioligand was slow at pH 7.4 but rapid and complete at pH 5.0 and 3.5. Ligand binding quenched the tryptophan fluorescence of the 27 kDa protein suggesting that tryptophan is present at the binding site and/or ligand binding induces a conformation change that affects tryptophan environment in the protein. The 27 kDa protein representing soluble folate binding protein exhibited a greater affinity for ligand binding than the 100 kDa protein which possesses a hydrophobic tail identical to the one that anchors the folate receptor to the cell membrane.


1991 ◽  
Vol 280 (1) ◽  
pp. 267-271 ◽  
Author(s):  
J Holm ◽  
S I Hansen ◽  
M Høier-Madsen ◽  
L Bostad

High-affinity [3H]folate binding in solubilized human choroid plexus homogenate displayed characteristics, e.g. apparent positive co-operativity, which are typical of specific folate binding. The highest folate-binding activity per g of protein was associated with the 27000 g membrane pellet where the membrane-marker enzyme gamma-glutamyltransferase had its main localization. Ultrogel AcA 44 chromatography revealed two major folate-binding proteins (molecular masses greater than 110 kDa and approx. 100 kDa) and one minor one (molecular mass approx. 25 kDa) and approx. 100 kDa) and one minor one (molecular mass approx. 25 kDa) in the Triton X-100-solubilized membrane pellet. After exposure of the membrane pellet to phosphatidylinositol-specific phospholipase C there was only one large 25 kDa peak of folate binding. This could suggest that the folate-binding protein is anchored to the membrane by a glycosylphosphatidylinositol moiety, which can be inserted into Triton X-100 micelles and thus can give rise to forms of large molecular size on gel filtration. This notion was supported by the identical molecular masses of the greater than 110 kDa and 25 kDa folate-binding peaks determined by SDS/PAGE and immunoblotting. The folate-binding protein in choroid plexus cross-reacted with rabbit antibodies against the 25 kDa human milk folate-binding protein, and paraffin-embedded sections of choroid plexus showed immunostaining after exposure to rabbit anti-(human milk folate-binding protein) serum (1:8000 dilution).


Apmis ◽  
2008 ◽  
Vol 108 (7-8) ◽  
pp. 517-524
Author(s):  
JAN Holm ◽  
STEEN INGEMANN Hansen ◽  
MIMI HØIer-Madsen ◽  
CARL W. Nichols

1976 ◽  
Vol 71 (1) ◽  
pp. 303-307 ◽  
Author(s):  
R R Weihing

When the 100,000 g supernatant fraction (extract) of HeLa cells lysed in a buffer containing sucrose, ATP, DTE, EGTA, imidazole, and Triton X-100 is incubated at 25 degrees C, it gels, and actin and a HMWP are progressively enriched in the extract and in gel isolated from extract. CB (greater than or equal to 0.25 muM) inhibits gelation and specifically lowers the concentrations of actin and the HMWP in the fraction which sediments at 100,000 g after incubation. These results indicate that actin and HMWP are partly disaggregated by cytochalasin treatment, and thus that their aggregation is related gelation. Inasmuch as previous results showed that actin is present and HMWP is enriched in the plasma membrane fraction of HeLa cells, the results also point to a possible relation between plasma membrane-associated gel and in vivo effects of CB.


1977 ◽  
Vol 75 (1) ◽  
pp. 95-103 ◽  
Author(s):  
R R Weihing

The gelation induced by warming (to 25 degrees C) the 100,000 g supernatant fraction (extract) of HeLa cells lysed in a buffer containing sucrose, ATP, DTE, EGTA, imidazole, and Triton X-100 was studied in the presence of myosin and heavy meromyosin (HMM). Myosin mixed with extract induces shrinkage of the gel, but jelled extract or myosin alone does not shrink. In the concentration range, 0.14-1.04 mg/ml of myosin, the degree of shrinkage is roughly proportional to the concentration of myosin. Supplementa MgCl2 also promotes shrinkage. HMM (0.4-0.8 mg/ml) can inhibit gel formation by extract in tubes or floated on a sucrose cushion. Gel electrophoresis of gels shrunken by added myosin or electrophoresis of the proteins which can be sedimented from extract after incubation in the presence of HMM indicate that both myosin and HMM interfere with the changes in sedimentability of the high molecular weight protein (HMWP) thought to participate (together with actin) in gel formation in HeLa cell extracts (R. R. Weihing, 1976. J. Cell Biol. 71:303-307). These results, together with previous results showing that actin is present and that HMWP is enriched in the plasma membrane fraction of HeLa cells (R. R. Weihing, 1976. Cold Spring Harbor Conf. Cell Proliferation. 3:671-684), point to the possibility of dynamic changes in the interactions of HMWP or myosin with actin in processes of movement occurring at the cell surface.


Sign in / Sign up

Export Citation Format

Share Document