Caspase-6 mediated cleavage of guanylate cyclase alpha 1 during deoxycholate-induced apoptosis: Protective role of the nitric oxide signaling module

2003 ◽  
Vol 19 (6) ◽  
pp. 373-392 ◽  
Author(s):  
C.M. Payne ◽  
C.N. Waltmire ◽  
C. Crowley ◽  
C.L. Crowley-Weber ◽  
K. Dvorakova ◽  
...  
2001 ◽  
Vol 8 (2) ◽  
pp. 144-151 ◽  
Author(s):  
F D'Acquisto ◽  
F de Cristofaro ◽  
M C Maiuri ◽  
G Tajana ◽  
R Carnuccio

Author(s):  
Fengyun Zhou ◽  
Ting Feng ◽  
Xiangqi Lu ◽  
Huicheng Wang ◽  
Yangping Chen ◽  
...  

Abstract Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.


Physiology ◽  
2013 ◽  
Vol 28 (4) ◽  
pp. 216-224 ◽  
Author(s):  
John W. Calvert ◽  
David J. Lefer

Exercise promotes cardioprotection in both humans and animals not only by reducing risk factors associated with cardiovascular disease but by reducing myocardial infarction and improving survival following ischemia. This article will define the role that nitric oxide and β-adrenergic receptors play in mediating the cardioprotective effects of exercise in the setting of ischemia-reperfusion injury.


2013 ◽  
Vol 37 ◽  
pp. 1155-1165 ◽  
Author(s):  
Farhana KAUSAR ◽  
Muhammad SHAHBAZ ◽  
Muhammad ASHRAF

2015 ◽  
Vol 29 (2) ◽  
pp. 854-862 ◽  
Author(s):  
Rishi Pal ◽  
Manju J. Chaudhary ◽  
Prafulla C. Tiwari ◽  
Suresh Babu ◽  
K.K. Pant

2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


Nitric Oxide ◽  
2006 ◽  
Vol 15 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Daniela Dal Secco ◽  
Ana P. Moreira ◽  
Andressa Freitas ◽  
João S. Silva ◽  
Marcos A. Rossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document