Subjektive politische Strukturen in der Deutschschweiz

2001 ◽  
Vol 60 (3) ◽  
pp. 192-201 ◽  
Author(s):  
Wolfgang Marx ◽  
Linda Stähli

This article attempts to explore, via nonmetric multidimensional scaling (NMDS), the subjective structure of Swiss political parties. Free associations and hierarchical sortings of students are analyzed. The association data is described best by a one-dimensional MINISSA-solution showing the dimension left-right. The sorting data leads to a two-dimensional solution showing the dimension left-right and radicality. Differences and similarities to previous studies in Germany ( Marx & Läge, 1995 ) are discussed.

1975 ◽  
Vol 97 (2) ◽  
pp. 161-165 ◽  
Author(s):  
C. L. Tien ◽  
L. S. Yao

The present paper presents a two-dimensional analysis of conduction-controlled rewetting of a vertical surface, whose initial temperature is greater than the rewetting temperature. The physical model consists of an infinitely extended vertical slab with the surface of the dry region adiabatic and the surface of the wet region associated with a constant heat transfer coefficient. The physical problem is characterized by three parameters: the Peclet number or the dimensionless wetting velocity, the Biot number, and a dimensionless temperature. Limiting solutions for large and small Peclet numbers obtained by utilizing the Wiener-Hopf technique and the kernel-substitution method exhibit simple functional relationships among the three dimensionless parameters. A semi- empirical relation has been established for the whole range of Peclet numbers. The solution for large Peclet numbers possesses a functional form different from existing approximate two-dimensional solutions, while the solution for small Peclet numbers reduces to existing one-dimensional solution for small Biot numbers. Discussion of the present findings has been made with respect to previous analyses and experimental observations.


1989 ◽  
Vol 111 (3) ◽  
pp. 598-604 ◽  
Author(s):  
P. F. Peterson ◽  
C. L. Tien

This work presents a two-dimensional axisymmetric diffusion model for the non-condensable gas distribution in gas-loaded heat pipes and thermosyphons. The new model, based on an integral analysis, has major advantages over existing, computationally time consuming, two-dimensional models. It has equal accuracy while using only the computational effort required for the cruder one-dimensional model, and also includes the effects of wall conduction and spatial variation of the condenser heat transfer coefficient. To simplify design calculations further an analytic two-dimensional solution is established, which gives excellent results over a wide range of parameters.


1976 ◽  
Vol 98 (3) ◽  
pp. 407-413 ◽  
Author(s):  
S. S. Dua ◽  
C. L. Tien

This paper presents a two-dimensional analysis of the effect of precursory cooling on conduction-controlled rewetting of a vertical surface, whose initial temperature is higher than the sputtering temperature. Precursory cooling refers to the cooling caused by the droplet-vapor mixture in the region immediately ahead of the wet front, and is described mathematically by two dimensionless constants which characterize its magnitude and the region of influence. The physical model developed to account for precursory cooling consists of an infinitely extended vertical surface with the dry region ahead of the wet front characterized by an exponentially decaying heat flux and the wet region behind the moving film-front associated with a constant heat transfer coefficient. Apart from the two dimensionless constants describing the extent of precursory cooling, the physical problem is characterized by three dimensionless groups: the Peclet number or the dimensionless wetting velocity, the Biot number and a dimensionless temperature. Limiting solutions for large and small Peclet numbers have been obtained utilizing the Wiener-Hopf technique coupled with appropriate kernel substitutions. A semiempirical matching relation is then devised for the entire range of Peclet numbers. Existing experimental data with variable flow rates at atmospheric pressure are very closely correlated by the present model. Finally a comparison is drawn between the one-dimensional limit of the present analysis and the corresponding one-dimensional solution obtained by treating the dry region ahead of the wet front characterized by an exponentially decaying heat transfer coefficient.


1998 ◽  
Vol 09 (02) ◽  
pp. 301-323 ◽  
Author(s):  
Jean-Guy Caputo ◽  
Nikos Flytzanis ◽  
Yuri Gaididei ◽  
Irene Moulitsa ◽  
Emmanuel Vavalis

We introduce a new type of splitting method for semilinear partial differential equations. The method is analyzed in detail for the case of the two-dimensional static sine-Gordon equation describing a large area Josephson junction with overlap current feed and external magnetic field. The solution is separated into an explicit term that satisfies the one-dimensional sine-Gordon equation in the y-direction with boundary conditions determined by the bias current and a residual which is expanded using modes in the y-direction, the coefficients of which satisfy ordinary differential equations in x with boundary conditions given by the magnetic field. We show by direct comparison with a two-dimensional solution that this method converges and that it is an efficient way of solving the problem. The convergence of the y expansion for the residual is compared for Fourier cosine modes and the normal modes associated to the static one-dimensional sine-Gordon equation and we find a faster convergence for the latter. Even for such large widths as w=10 two such modes are enough to give accurate results.


2004 ◽  
Vol 21 (3) ◽  
pp. 403-407 ◽  
Author(s):  
DAVID L. BIMLER ◽  
GALINA V. PARAMEI

For normal trichromats, the hue of a light can change as its luminance varies. This Bezold-Brücke (B-B) hue shift is commonly attributed to nonlinearity in the blue–yellow opponent system. In the present study, we questioned whether protanopes experience analogous changes. Two protanopes (Ps) viewed spectral lights at six luminance levels across three log steps. Two normal trichromats (NTs) were tested for comparison. A variant of the color-naming method was used, with an additional “white” term. To overcome the difficulty of Ps' idiosyncratic color naming, we converted color-naming functions into individual color spaces, by way of interstimulus similarities and multidimensional scaling (MDS). The color spaces describe each stimulus in terms of spatial coordinates, so that hue shifts are measured geometrically, as displacements along specific dimensions. For the NTs, a B-B shift derived through MDS agreed well with values obtained directly by matching color-naming functions. A change in color appearance was also observed for the Ps, distinct from that in perceived brightness. This change was about twice as large as the B-B shift for NTs and combined what the latter would distinguish as hue and saturation shifts. The protanopic analogue of the B-B shift indicates that the blue–yellow nonlinearity persists in the absence of a red–green signal. In addition, at mesopic levels (≤ 38 td), the Ps' MDS solution was two dimensional at longer wavelengths, suggesting rod input. Conversely, at higher luminance levels (76 td–760 td) the MDS solution was essentially one dimensional, placing a lower limit on S-cone input at longer wavelengths.


Finite amplitude thermal convection in a fluid layer between two horizontal walls with different fixed mean temperatures is considered when spatially modulated temperatures with amplitudes L 1 * and L u * are prescribed at the lower and upper walls, respectively. The nonlinear steady problem is solved by a perturbation technique, and the preferred mode of convection is determined by a stability analysis. In the case of a resonant wavelength excitation, regular or non-regular multi-modal pattern convection can be preferred for some ranges of L 1 * and L u *, provided the wave vectors for such patterns are contained in a certain subset of the wave vectors representing a linear combination of modulated upper and lower boundary temperatures. In the case of non-resonant wavelength excitation, a three (two) dimensional solution in the form of multi-modal (rolls) pattern convection can be preferred, even if the boundary modulations are one (two) or two (one) dimensional, provided the wavelengths of the modulations are not too small. Heat transported by convection can be enhanced by boundary modulations in some ranges of L 1 * and L u *.


1997 ◽  
Vol 85 (3) ◽  
pp. 859-866 ◽  
Author(s):  
Paula M. Popovich ◽  
Wendi J. Everton ◽  
Karin L. Campbell ◽  
Rhonda M. Godinho ◽  
Kevin M. Kramer ◽  
...  

Researchers have speculated that employers are less likely to hire obese persons for more publicly visible jobs, although this hypothesis remains untested. In the present study, 54 undergraduate students rated 40 jobs on several items, including the likelihood they would hire an obese person for each job. Multidimensional scaling showed a one-dimensional solution, labeled as physical activity, with participants less likely to hire obese persons for more active jobs. For hiring likelihood ratings for jobs at either end of the dimension appear to be most similar for men and individuals with more positive attitudes toward obese persons versus women and individuals with more negative attitudes toward obese persons. Implications for both theory and practice are discussed.


1973 ◽  
Vol 15 (2) ◽  
pp. 114-122 ◽  
Author(s):  
J. G. A. Lovegrove ◽  
J. G. Williams

A theoretical analysis is given which illustrates the rôle of gravity forces in solids conveying. A one-dimensional solution for flow in an extruder channel is used to investigate the nature of the solution and a more precise, two-dimensional, version is then developed.


Sign in / Sign up

Export Citation Format

Share Document