Split Mode Method for the Elliptic 2D Sine-Gordon Equation: Application to Josephson Junction in Overlap Geometry

1998 ◽  
Vol 09 (02) ◽  
pp. 301-323 ◽  
Author(s):  
Jean-Guy Caputo ◽  
Nikos Flytzanis ◽  
Yuri Gaididei ◽  
Irene Moulitsa ◽  
Emmanuel Vavalis

We introduce a new type of splitting method for semilinear partial differential equations. The method is analyzed in detail for the case of the two-dimensional static sine-Gordon equation describing a large area Josephson junction with overlap current feed and external magnetic field. The solution is separated into an explicit term that satisfies the one-dimensional sine-Gordon equation in the y-direction with boundary conditions determined by the bias current and a residual which is expanded using modes in the y-direction, the coefficients of which satisfy ordinary differential equations in x with boundary conditions given by the magnetic field. We show by direct comparison with a two-dimensional solution that this method converges and that it is an efficient way of solving the problem. The convergence of the y expansion for the residual is compared for Fourier cosine modes and the normal modes associated to the static one-dimensional sine-Gordon equation and we find a faster convergence for the latter. Even for such large widths as w=10 two such modes are enough to give accurate results.

2011 ◽  
Vol 10 (5) ◽  
pp. 1161-1183 ◽  
Author(s):  
Houde Han ◽  
Zhiwen Zhang

AbstractIn this paper the numerical solution of the two-dimensional sine-Gordon equation is studied. Split local artificial boundary conditions are obtained by the operator splitting method. Then the original problem is reduced to an initial boundary value problem on a bounded computational domain, which can be solved by the finite difference method. Several numerical examples are provided to demonstrate the effectiveness and accuracy of the proposed method, and some interesting propagation and collision behaviors of the solitary wave solutions are observed.


1995 ◽  
Vol 05 (02) ◽  
pp. 491-505 ◽  
Author(s):  
A.G. MAKSIMOV ◽  
V.I. NEKORKIN ◽  
M.I. RABINOVICH

Soliton dynamics in a perturbed sine-Gordon equation modeling a long Josephson junction is investigated. Solitons are found to exist in both simple and chaotic forms. Soliton synchronization by an alternating magnetic field is analysed. Current-voltage characteristics of Josephson junction are plotted.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


1968 ◽  
Vol 8 (03) ◽  
pp. 293-303 ◽  
Author(s):  
H.S. Price ◽  
J.C. Cavendish ◽  
R.S. Varga

Abstract A numerical formulation of high order accuracy, based on variational methods, is proposed for the solution of multidimensional diffusion-convection-type equations. Accurate solutions are obtained without the difficulties that standard finite difference approximations present. In addition, tests show that accurate solutions of a one-dimensional problem can be obtained in the neighborhood of a sharp front without the need for a large number of calculations for the entire region of interest. Results using these variational methods are compared with several standard finite difference approximations and with a technique based on the method of characteristics. The variational methods are shown to yield higher accuracies in less computer time. Finally, it is indicated how one can use these attractive features of the variational methods for solving miscible displacement problems in two dimensions. Introduction The problem of finding suitable numerical approximations for equations describing the transport of heat or mass by diffusion and convection simultaneously has been of interest for some time. Equations of this type, which will be called diffusion-convection equations, arise in describing many diverse physical processes. Of particular interest here is the equation describing the process by which one miscible liquid displaces another liquid in a one-dimensional porous medium. The behavior of such a system is described by the following parabolic partial differential equation: (1) where the diffusivity is taken to be unity and c(x, t) represents a normalized concentration, i.e., c(x, t) satisfied 0 less than c(x, t) less than 1. Typical boundary conditions are given by ....................(2) Our interest in this apparently simple problem arises because accurate numerical approximations to this equation with the boundary conditions of Eq. 2 are as theoretically difficult to obtain as are accurate solutions for the general equations describing the behavior of two-dimensional miscible displacement. This is because the numerical solution for this simplified problem exhibits the two most important numerical difficulties associated with the more general problem: oscillations and undue numerical dispersion. Therefore, any solution technique that successfully solves Eq. 1, with boundary conditions of Eq. 2, would be excellent for calculating two-dimensional miscible displacement. Many authors have presented numerical methods for solving the simple diffusion-convection problem described by Eqs. 1 and 2. Peaceman and Rachford applied standard finite difference methods developed for transient heat flow problems. They observed approximate concentrations that oscillated about unity and attempted to eliminate these oscillations by "transfer of overshoot". SPEJ P. 293ˆ


Sign in / Sign up

Export Citation Format

Share Document