scholarly journals Inferior vena cava filter – comprehensive overview of current indications, techniques, complications and retrieval rates

VASA ◽  
2020 ◽  
Vol 49 (6) ◽  
pp. 449-462 ◽  
Author(s):  
Xin Li ◽  
Ihab Haddadin ◽  
Gordon McLennan ◽  
Behzad Farivar ◽  
Daniel Staub ◽  
...  

Summary: Inferior vena cava (IVC) filter has been used to manage patients with pulmonary embolism and deep venous thrombosis. Its ease of use and the expansion of relative indications have led to a dramatic increase in IVC filter placement. However, IVC filters have been associated with a platitude of complications. Therefore, there exists a need to examine the current indications and identify the patient population at risk. In this paper, we comprehensively reviewed the current indications and techniques of IVC filter placement. Further, we examined the various complications associated with either permanent or retrievable IVC filters. Lastly, we examined the current data on filter retrieval.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5912-5912
Author(s):  
Rena Shah ◽  
Anita Turk ◽  
Bilal Rahim ◽  
Waddah Arafat ◽  
Moniba Nazeef ◽  
...  

Abstract Inferior vena cava (IVC) filters, first introduced in 1998, have been utilized to reduce risk of pulmonary embolism (PE) in the setting of an inability to anticoagulate patients. The use of IVC filters has increased and continues to rise, especially with the introduction of retrievable IVC filters. Since their initial introduction, guidelines have been developed on the appropriate use of IVC filters. According to the American College of Chest Physicians (ACCP), the use of an IVC filter is limited to patients with an absolute contraindication to therapeutic anticoagulation or failure or complication of anticoagulation in the setting an acute proximal venous thrombus. Relative indications for IVC filter placement include high clot burden in setting of low cardiopulmonary reserve, high risk patients, or severe trauma without documented thrombosis. In 2010, the FDA announced a safety communication recommending removal of retrievable IVC filters due to reports of several adverse clinical outcomes associated with retained filters including thrombus formation, recurrent PE, filter migration, erosion or perforation through the IVC wall, and filter fracture with fragment embolization. In 2014, the FDA recommended removal of the IVC filter within 2 months after filter placement if the patient's risk of thrombosis had passed. In this retrospective analysis of IVC filter management, we reviewed indications for placement according to current guidelines as set by the ACCP, initiation of appropriate anticoagulation, complication rates, and retrieval rates. In addition, we compared the data prior to the FDA recommendations in late 2014 and data after the recommendations to determine if there was a change in practice. After reviewing 179 patients, 89 patients in 2014 and 90 patients in 2015, who underwent IVC filter placement, only 81% (N=145) of patients had appropriate indications for IVC filter placement and 30% (N=54) of patients had inappropriate anticoagulation after IVC filter placement, given as prophylactic dosing of low molecular weight heparin. A comparison of retrieval rates prior to and after the FDA warning, showed a 19% (60% in 2014 vs 79% in 2015) improvement in IVC filter removals. There was an 11% complication rate, mainly related to IVC filter related acute DVT or IVC occlusion. A root cause analysis specifically for inappropriate IVC filter placement and appropriate anticoagulation and determined that familiarity of the guidelines and non-evidence based recommendations from consultants were major factors. Based on the analysis, we next plan to utilize the electronic health record system to help clinicians understand indications and when to initiate appropriate anticoagulation, with the opportunity for hematology consultants to be involved in situations that do not clearly fit within published guidelines. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 914-914
Author(s):  
Nikhil Bhalla ◽  
Anca Bulgaru ◽  
Lynn Church ◽  
Dinesh Kapur ◽  
Herb Lustberg ◽  
...  

Abstract Inferior vena cava (IVC) filters are used in patients (pts.) with Deep Venous Thrombosis (DVT) to prevent pulmonary embolism (PE) when anticoagulation cannot be administered. The purpose of this study was to analyze the use and outcomes of IVC filters in a community hospital. We reviewed the medical records of all pts. who had IVC filters implanted at William W. Backus Hospital between May 2003 and May 2005. Follow up information was obtained up to August 2005 by mailings from the attending physicians. 125 IVC filters were implanted in 121 pts., ages 18 to 93, with 61 males and 60 females. The indications for implantation were contraindication as follows: to anticoagulation in 72 pts. (58%), up coming surgical procedures in 33 pts. (26%), and severity of clot burden in 20 pts. (16%). 123 (98%) filters were deployed into an infrarenal position and 2 into a suprarenal position due to extensive clot in the IVC. Of the 105 filters that were not retrieved 60 were Gunther Tulip (GT) retrievable IVC filters, 42 were Cordis Trapease (CT) permanent IVC filters, 2 were stainless steel Greenfield IVC filters, and 1 was a Cordis Optease (CO) IVC filter. Of the 20 retrieved filters 19 were GT retrievable IVC filters and 1 was a CO IVC filter. Of the 125 filters, 74 were intended to be permanent filters (59%) and 51 (41%) were inserted with intention of retrieval. 31/51 (60%) were eventually not retrieved because of various reasons: need for additional surgery (12), poor pulmonary reserve (5), high-risk of bleeding (5), severity of clot burden (4), short life expectancy (4), and extremely high risk of recurrent DVT (1). Short-term and long-term anticoagulation was used in conjunction with the IVC filters in 21 and 81 pts. respectively. 38 (31%) of the 121 pts. experienced recurrent venous thromboembolism (VTE), 37 developed symptomatic DVT and 1 had a symptomatic PE. 3/20 (15%) of the pts. who had their filters retrieved developed recurrent DVT (18, 22, and 76 days after filter retrieval) compared with 34/105 (32%) pts. who had permanent filters. The only objectively documented symptomatic PE occurred in a pt. with a permanent filter. This pt. had a recurrent PE 7 months post GT IVC filter insertion diagnosed by chest CT scan with PE protocol. Complications were as follows: 1 pt. had transient hypertension immediately after IVC insertion and 1 pt. developed a transient low-grade fever after retrieval. 1 pt. developed retroperitoneal hematoma upon retrieval 75 days after implantation as documented by an IVC Gram and this pt. recovered without need for any intervention and there were no adverse clinical consequences. The implantation periods ranged from 2 to 104 days in the 20 retrieved filters with mean/median of 20/9 days. 4 of the 20 retrieved filters (20%) contained trapped emboli and none of these pts. subsequently developed PE. The GT retrievable IVC filter is now the filter of choice at our institution and can be implanted permanently or with retrieval in mind. Conclusion: Retrievable filters were removed up to 104 days post insertion in this series of pts. and the incidence of complications was negligible. Retrievable IVC filters may be substituted for permanent IVC filters to preserve the option of retrieval, and retrieval of filters beyond 3 months post implantation is feasible and should be studied further.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2553-2553
Author(s):  
Amanjit S. Baadh ◽  
Stephen Rivoli ◽  
Jack Ansell ◽  
Robert E. Graham

Abstract Abstract 2553 Background: Inferior Vena Cava (IVC) filter placement has increased significantly over the past few decades, due to expanding indications for filter placement. Indications for filter placement vary widely depending on which professional society recommendations are followed. Our objectives were to record the number of IVC filters placed in our medium sized metropolitan teaching hospital, assess the effect of medical specialty on placement and evaluate compliance with accepted standards as set by the American College of Chest Physicians (ACCP) and the Society of Interventional Radiology (SIR). Methods: Single-center, retrospective medical record review of all patients who received an IVC filter over 26 months (01/30/2008 - 4/5/2010). Inclusion criteria included patients from both sexes, all ages, filter placement within the aforementioned dates and inpatient procedures performed by interventional radiology. A total of 443 IVC filters were placed in our institution over the time period studied. 48.1% (213) of these filters were placed by interventional radiology. Of these, 187 were reviewed with 26 excluded do to incomplete patient records available at the time of review (July 2010). Medical records were reviewed for patient demographics, clinical course, and compliance with accepted guidelines set by the ACCP and SIR. Results: The average age was 75.3 years and 43.9% of the patients were males. 76.2% of patients were on the medical service (internal medicine and its subspecialties) whereas 22.8% were on non medical services. 87.2 % of filters were recommended by medicine and its subspecialties and 12.8% by non medical specialties. 43.3% of filters placed met guidelines established by the ACCP (Table 1). 79.1% of filters placed met SIR guidelines (Table 2). No documentation was available to assess compliance for 20.9% of filters. 46% of filters placed by internal medicine and its subspecialties met ACCP criteria whereas only 25% of filters recommended by non medicine specialties were compliant with criteria (p value=0.039, 95% CI). Physicians within internal medicine and its subspecialties were compliant with SIR guidelines for 84% of the filters placed, whereas only 46% of non medicine physicians met these indications (p=0.001, 95% CI). 35.8% of filters placed met SIR criteria but did not meet ACCP guidelines. Conclusions: Indications for IVC filter placement varied significantly in this study, less than half of filters placed met ACCP guidelines, yet over three-fourths met criteria set by the SIR, especially when comparing medicine and non medicine specialties. In analyzing the filters which meet indications set by SIR but not ACCP it becomes apparent that most of these are placed for patients classified as “fall risks”, failures of anticoagulation, limited cardiopulmonary reserve and medication noncompliance. Further research needs to be guided towards evaluating if these indications truly merit the placement of an IVC filter. This study strongly suggests a need for harmonization of current guidelines espoused by professional societies. A limitation of our study was that 230 filters placed by vascular surgery and interventional cardiology were not reviewed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4690-4690
Author(s):  
Filip Ionescu ◽  
Nwabundo Anusim ◽  
Eva Ma ◽  
Lihua Qu ◽  
Leann Blankenship ◽  
...  

Background: Inferior vena cava (IVC) filters are indicated in patients with deep vein thrombosis (DVT) or pulmonary embolism (PE) who either have contraindications to or have failed anticoagulation (AC). Given rising concerns about their safety and efficacy, the FDA has issued a communication urging clinicians to remove filters (optimally, within 90 days post-implantation). According to national data retrieval rates remain low. Our study aimed to assess IVC filter retrieval rates and factors that influence retrieval. Methods: This is a single center, retrospective cohort study of patients who had IVC filter placement between December 2015 and December 2018. Subjects were identified using procedural codes for IVC filter insertion; data regarding demographics, comorbidities, retrieval, IVC filter-related complications and subsequent thromboembolic events were obtained by direct chart review. Survival analyses and a Cox regression model were performed using JMP statistical software. Results: Over 3 years, 494 patients with IVC filters were identified; 305 (62%) were retrievable. The average age at placement was 69±16 years; 249 (50%) were men and 332 (67%) were Caucasian. After excluding patients who died or were lost to follow-up within 30 days of placement or were discharged to hospice from the index admission, 258 patients with retrievable filters remained (54 retrieved). Indications for IVC filter placement were PE ± DVT 90 (35%), proximal DVT 159 (62%) and prophylactic 9 (3%). Forty two percent of patients (109) were restarted on AC at discharge, while an additional 18% (total 155) received AC at some point thereafter. The rate of retrieval was 8% at 90 days, 23% at 1 year and 28% at 2 years (Figure A). The proportional hazards model identified resumption of AC at any time (HR 3.11, 95%CI 1.6-6.8, p=0.0006) as the strongest predictor of retrieval; AC at discharge was not predictive. Advanced age at placement (HR 0.97 per unit change, 0.96-0.99, p=0.004) and active malignancy (HR 0.5, 95%CI 0.24-0.98, p=0.04) were associated with a lower likelihood of retrieval. The initial thrombotic event, the reversibility of the contraindication to AC, the placing service, sex, ethnicity and other comorbid conditions did not have an impact on retrieval. Kaplan-Meier analysis revealed that subjects who ever resumed AC had significantly higher rates of retrieval at 90 days (11% vs 3.4%) and at 1 year (33% vs 9.7%, log-rank p=0.0003, Figure B) when compared to those who did not. Only four patients experienced IVC filter-related complications (2 filter thrombosis, 1 IVC penetration, 1 device tilting); all occurred 2 or more years after placement. Recurrent thromboembolic events occurred in 50 patients (5 PE, 48 proximal DVT) with no significant difference in frequency between subjects with retrieved and non-retrieved filters; one PE and one DVT occurred at 1 month and 1 week respectively after retrieval. Conclusion: Despite efforts to increase awareness of IVC filter-associated complications, the unweighted retrieval rate remained below the nationally reported average of 30%. Persistent risk factors for thrombosis such as active malignancy or increasing age and poor prognosis may play a role in the decision to defer retrieval. In our study, resumption of AC proved a powerful predictor of retrieval, with rates approaching expected values in this population. Active surveillance for resolution of contraindications to AC post-IVC filter placement is crucial in increasing retrieval rates. Figure Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Han Ni ◽  
Lei Lei Win

Inferior vena cava (IVC) filters are used as an alternative to anticoagulants for prevention of fatal pulmonary embolism (PE) in venous thromboembolic disorders. Retrievable IVC filters have become an increasingly attractive option due to the long-term risks of permanent filter placement. These devices are shown to be technically feasible in insertion and retrieval percutaneously while providing protection from PE. Nevertheless, there are complications and failed retrievals with these retrievable filters. The aim of the paper is to review the retrievable filters and their efficacy, safety, and retrievability.


2020 ◽  
Vol 4 ◽  
pp. 20
Author(s):  
Jung Hyun Yun ◽  
Vinit Khanna ◽  
Rakesh Shewal Ahuja ◽  
Balasubramani Natarajan

Inferior vena cava (IVC) filter placement can lead to rare but sometimes serious complications, including malposition of the IVC filter in a non-target vessel or organ. We present the case of a 74-year-old male who presented to our institution for a percutaneous nephrostomy tube change and was incidentally found to have two IVC filters, one of which was properly positioned in the IVC and one of which was improperly deployed in the right ascending lumbar vein. Venography through the sheath before filter loading and deployment decreases the risk of malpositioning the IVC filter.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 795
Author(s):  
Hina Khan ◽  
Usman Jilani

Venous thromboembolic disease is associated with high rates of morbidity and mortality. First line therapy for thromboembolic disease remains anticoagulation. However, certain populations warrant consideration of an inferior vena cava (IVC) filter. This case report discusses an example of a patient who presented with an acute pulmonary embolism and highlights the utilization of the inferior vena cava (IVC) filter as patient therapy. Thus, in this case report we will review the indications for IVC filter placement and compare the compliance of IVC filter placement to established guidelines of use.


2009 ◽  
Vol 75 (5) ◽  
pp. 426-428 ◽  
Author(s):  
Scott F. Gaspard ◽  
Donald J. Gaspard

There has been an increasing nationwide trend of inferior vena cava (IVC) filter placement over the past 3 years. Most of these have been the newer, removable variety. Although these are marketed as retrievable, few are removed. The purpose of this study was to examine the practice pattern of IVC filter placement at Huntington Hospital. This study is a retrospective chart review of all IVC filter placements and removals between January 1, 2004, and December 31, 2006. The primary data points include indication for placement, major complications (migration, caval thrombosis, pulmonary embolus [PE]), attempted removal, and successful removal. Three hundred ten patients received IVC filters at our institution during this period. Eighty-four were placed in 2004, 95 in 2005, and 131 in 2006. Of those, only 12 (3.9%) were documented permanent filters, whereas the remainder (298) were removable. Of the retrievable filters placed, only 11 (3.7%) underwent successful removal. There were four (1.3%) instances in which the filter could not be removed as a result of thrombus present within the filter and two (0.67%) in which removal was aborted as a result of technical difficulty. Our use of IVC filters has increased steadily over the last 3 years. Despite the rise in use of “removable” filter devices, few are ever retrieved. Although IVC filter insertion appears an effective method of PE prevention, it comes at a cost, both physiological and monetary. It would be wise to devise more stringent criteria to identify those patients in the various populations who truly require filter placement and to be cautious in altering our indications for placement.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Michael D. Dake ◽  
Gary M. Ansel ◽  
Matthew S. Johnson ◽  
Robert Mendes ◽  
H. Bob Smouse

The Sentry inferior vena cava (IVC) filter is designed to provide temporary protection against pulmonary embolism (PE) during transient high-risk periods and then to bioconvert after 60 days after implantation. At the time of bioconversion, the device’s nitinol arms retract from the filtering position into the caval wall. Subsequently, the stable stent-like nitinol frame is endothelialized. The Sentry bioconvertible IVC filter has been evaluated in a multicenter investigational-device-exemption pivotal trial (NCT01975090) of 129 patients with documented deep vein thrombosis (DVT) or PE, or at temporary risk of developing DVT or PE, and with contraindications to anticoagulation. Successful filter conversion was observed in 95.7% of patients at 6 months (110/115) and 96.4% at 12 months (106/110). Through 12 months, there were no cases of symptomatic PE. The rationale for development of the Sentry bioconvertible device includes the following considerations: (1) the period of highest risk of PE for the vast majority of patients occurs within the first 60 days after an index event, with most of the PEs occurring in the first 30 days; (2) the design of retrievable IVC filters to support their removal after a transitory high-PE-risk period has, in practice, been associated with insecure filter dynamics and time-dependent complications including tilting, fracture, embolization, migration, and IVC perforation; (3) most retrievable IVC filters are placed for temporary protection, but for a variety of reasons they are not removed in any more than half of implanted patients, and when removal is attempted, the procedure is not always successful even with advanced techniques; and (4) analysis of Medicare hospital data suggests that payment for the retrieval procedure does not routinely compensate for expense. The Sentry device is not intended for removal after bioconversion. In initial clinical use, complications have been limited. Long-term results for the Sentry bioconvertible IVC filter are anticipated soon.


Vascular ◽  
2004 ◽  
Vol 12 (4) ◽  
pp. 233-237 ◽  
Author(s):  
Russell C. Lam ◽  
Ruth L. Bush ◽  
Peter H. Lin ◽  
Alan B. Lumsden

Deep venous thrombosis with or without subsequent pulmonary embolism is a common preventable cause of hospital death. Although anticoagulation is the accepted standard therapy for thromboembolic disease, in situations in which anticoagulation is contraindicated, interruption of the inferior vena cava (IVC) by means of percutaneous placement of a filter has become a widely used alternative. We report our initial experience with two retrievable IVC filters. Between July 2002 and April 2003, 13 patients ( mean age 54 ± 7 years; range 29–75 years) underwent percutaneous placement of either the Gunther Tulip ( n = 5; Cook Inc., Bloomington, IN) or OptEase ( n = 8; Cordis, Miami Lakes, FL) IVC filter. Five patients had filters placed prophylactically before major surgery. The remaining eight patients had had a contraindication to anticoagulation, and three had experienced a hemorrhagic complication as a result of anticoagulation following either a recently documented deep venous thrombosis ( n = 3) or pulmonary embolism ( n = 5). Filters were successfully placed in all 13 patients, with a duration of implantation ranging from 2 to 15 days. Retrieval was attempted in 12 patients (in 1 patient, permanent filtration was secondarily requested) and was achieved in 10 (84.6%) patients. In 2 patients, retrieval failure was due to device angulation within the vena cava precluding safe retrieval. In both instances, the device used was the Gunther Tulip filter. No patient developed symptomatic pulmonary embolism or insertion-site thrombosis following either filter deployment or removal. Trapped thrombus in the filters was seen in all patients. Retrieval required a mean of 6.8 minutes (range 5–10.2 minutes) of fluoroscopy time. Neither filter migration nor caval injury was observed. Temporary IVC filters are effective and are associated with a high retrieval success rate. Further study is warranted to determine the maximal duration of implantation and whether retrievable IVC filters should expand the indications for IVC filter placement.


Sign in / Sign up

Export Citation Format

Share Document