Newborn's Preference for Faces

1996 ◽  
Vol 1 (3) ◽  
pp. 200-205 ◽  
Author(s):  
Carlo Umiltà ◽  
Francesca Simion ◽  
Eloisa Valenza

Four experiments were aimed at elucidating some aspects of the preference for facelike patterns in newborns. Experiment 1 showed a preference for a stimulus whose components were located in the correct arrangement for a human face. Experiment 2 showed a preference for stimuli that had optimal sensory properties for the newborn visual system. Experiment 3 showed that babies directed their attention to a facelike pattern even when it was presented simultaneously with a non-facelike stimulus with optimal sensory properties. Experiment 4 showed the preference for facelike patterns in the temporal hemifield but not in the nasal hemifield. It was concluded that newborns' preference for facelike patterns reflects the activity of a subcortical system which is sensitive to the structural properties of the stimulus.

2019 ◽  
Vol 31 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Wladimir Kirsch ◽  
Roland Pfister ◽  
Wilfried Kunde

An object appears smaller in the periphery than in the center of the visual field. In two experiments ( N = 24), we demonstrated that visuospatial attention contributes substantially to this perceptual distortion. Participants judged the size of central and peripheral target objects after a transient, exogenous cue directed their attention to either the central or the peripheral location. Peripheral target objects were judged to be smaller following a central cue, whereas this effect disappeared completely when the peripheral target was cued. This outcome suggests that objects appear smaller in the visual periphery not only because of the structural properties of the visual system but also because of a lack of spatial attention.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2112
Author(s):  
Anthony C. Little ◽  
Jack A. F. Griffey

Background: Visual symmetry is often found attractive. Symmetry may be preferred either due to a bias in the visual system or due to evolutionary selection pressures related to partner preference. Simple perceptual bias views predict that symmetry preferences should be similar across types of stimuli and unlikely to be related to factors such as age. Methods: The current study examined preferences for symmetry across age groups (pre-puberty vs post-puberty) and stimuli type (human face vs monkey face). Pairs of images manipulated for symmetry were presented and participants asked to choose the image they preferred. Participants repeated the task and were asked to detect symmetry. Results: Both age of observer and stimuli type were associated with symmetry preferences. Older observers had higher preferences for symmetry but preferred it most in human vs monkey stimuli. Across both age groups, symmetry preferences and detection abilities were weakly related. Conclusions: The study supports some ideas from an evolutionary advantage view of symmetry preference, whereby symmetry is expected be higher for potential partners (here human faces) and higher post-puberty when partner choice becomes more relevant. Such potentially motivational based preferences challenge perceptual bias explanations as a sole explanation for symmetry preferences but may occur alongside them.


2003 ◽  
Vol 43 (6) ◽  
pp. 849-854 ◽  
Author(s):  
Tsutomu Ando ◽  
Kazuyuki Ueno ◽  
Shoji Taniguchi ◽  
Toshiyuki Takagi

2020 ◽  
Author(s):  
Samson Chengetanai ◽  
Adhil Bhagwandin ◽  
Mads F. Bertelsen ◽  
Therese Hård ◽  
Patrick R. Hof ◽  
...  

Author(s):  
Klaus-Ruediger Peters

Differential hysteresis processing is a new image processing technology that provides a tool for the display of image data information at any level of differential contrast resolution. This includes the maximum contrast resolution of the acquisition system which may be 1,000-times higher than that of the visual system (16 bit versus 6 bit). All microscopes acquire high precision contrasts at a level of <0.01-25% of the acquisition range in 16-bit - 8-bit data, but these contrasts are mostly invisible or only partially visible even in conventionally enhanced images. The processing principle of the differential hysteresis tool is based on hysteresis properties of intensity variations within an image.Differential hysteresis image processing moves a cursor of selected intensity range (hysteresis range) along lines through the image data reading each successive pixel intensity. The midpoint of the cursor provides the output data. If the intensity value of the following pixel falls outside of the actual cursor endpoint values, then the cursor follows the data either with its top or with its bottom, but if the pixels' intensity value falls within the cursor range, then the cursor maintains its intensity value.


Sign in / Sign up

Export Citation Format

Share Document