Conflict-Specific Effects of Accessory Stimuli on Cognitive Control in the Stroop Task and the Simon Task

Author(s):  
Alexander Soutschek ◽  
Hermann J. Müller ◽  
Torsten Schubert

Both the Stroop and the Simon paradigms are often used in research on cognitive control, however, there is evidence that dissociable control processes are involved in these tasks: While conflicts in the Stroop task may be resolved mainly by enhanced task-relevant stimulus processing, conflicts in the Simon task may be resolved rather by suppressing the influence of task-irrelevant information on response selection. In the present study, we show that these control mechanisms interact in different ways with the presentation of accessory stimuli. Accessory stimuli do not affect cognitive control in the Simon task, but they impair the efficiency of cross-trial control processes in the Stroop task. Our findings underline the importance of differentiating between different types of conflicts and mechanisms of cognitive control.

2013 ◽  
Vol 17 (3) ◽  
pp. 610-629 ◽  
Author(s):  
HENRIKE K. BLUMENFELD ◽  
VIORICA MARIAN

Bilinguals have been shown to outperform monolinguals at suppressing task-irrelevant information and on overall speed during cognitive control tasks. Here, monolinguals’ and bilinguals’ performance was compared on two nonlinguistic tasks: a Stroop task (with perceptualStimulus–Stimulus conflictamong stimulus features) and a Simon task (withStimulus–Response conflict). Across two experiments testing bilinguals with different language profiles, bilinguals showed more efficient Stroop than Simon performance, relative to monolinguals, who showed fewer differences across the two tasks. Findings suggest that bilingualism may engage Stroop-type cognitive control mechanisms more than Simon-type mechanisms, likely due to increased Stimulus–Stimulus conflict during bilingual language processing. Findings are discussed in light of previous research on bilingual Stroop and Simon performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Albert Lehr ◽  
Niklas Henneberg ◽  
Tarana Nigam ◽  
Walter Paulus ◽  
Andrea Antal

Behavioral response conflict arises in the color-word Stroop task and triggers the cognitive control network. Midfrontal theta-band oscillations correlate with adaptive control mechanisms during and after conflict resolution. In order to prove causality, in two experiments, we applied transcranial alternating current stimulation (tACS) at 6 Hz to the dorsolateral prefrontal cortex (DLPFC) during Stroop task performance. Sham stimulation served as a control in both experiments; 9.7 Hz tACS served as a nonharmonic alpha band control in the second experiment. We employed generalized linear mixed models for analysis of behavioral data. Accuracy remained unchanged by any type of active stimulation. Over both experiments, the Stroop effect (response time difference between congruent and incongruent trials) was reduced by 6 Hz stimulation as compared to sham, mainly in trials without prior conflict adaptation. Alpha tACS did not modify the Stroop effect. Theta tACS can both reduce the Stroop effect and modulate adaptive mechanisms of the cognitive control network, suggesting midfrontal theta oscillations as causally involved in cognitive control.


2021 ◽  
Author(s):  
Arthur Prével ◽  
Ruth Krebs ◽  
Nanne Kukkonen ◽  
Senne Braem

Motivation signals have been shown to influence the engagement of cognitive control processes. However, most studies focus on the invigorating effect of reward prospect, rather than the reinforcing effect of reward feedback. The present study aimed to test whether people strategically adapt conflict processing when confronted with condition-specific congruency-reward contingencies in a manual Stroop task. Results show that the size of the Stroop effect can be affected by selectively rewarding responses following incongruent versus congruent trials. However, our findings also suggest important boundary conditions. Our first two experiments only show a modulation of the Stroop effect in the first half of the experimental blocks, possibly due to our adaptive threshold procedure demotivating adaptive behavior over time. The third experiment showed an overall modulation of the Stroop effect, but did not find evidence for a similar modulation on test items, leaving open whether this effect generalizes to the congruency conditions, or is stimulus-specific. More generally, our results are consistent with computational models of cognitive control and support contemporary learning perspectives on cognitive control. The findings also offer new guidelines and directions for future investigations on the selective reinforcement of cognitive control processes.


2007 ◽  
Vol 362 (1485) ◽  
pp. 1671-1684 ◽  
Author(s):  
Tom Stafford ◽  
Kevin N Gurney

The Stroop task is a paradigmatic psychological task for investigating stimulus conflict and the effect this has on response selection. The model of Cohen et al. (Cohen et al . 1990 Psychol. Rev. 97 , 332–361) has hitherto provided the best account of performance in the Stroop task, but there remains certain key data that it fails to match. We show that this failure is due to the mechanism used to perform final response selection—one based on the diffusion model of choice behaviour (Ratcliff 1978 Psychol. Rev. 85 , 59–108). We adapt the model to use a selection mechanism which is based on the putative human locus of final response selection, the basal ganglia/thalamo-cortical complex (Redgrave et al. 1999 Neuroscience 89 , 1009–1023). This improves the match to the core human data and, additionally, makes it possible for the model to accommodate, in a principled way, additional mechanisms of cognitive control that enable better fits to the data. This work prompts a critique of the diffusion model as a mechanism of response selection, and the features that any response mechanism must possess to provide adaptive action selection. We conclude that the consideration of biologically constrained solutions to the action selection problem is vital to the understanding and improvement of cognitive models of response selection.


2007 ◽  
Vol 19 (8) ◽  
pp. 1286-1301 ◽  
Author(s):  
Marianne de Chastelaine ◽  
David Friedman ◽  
Yael M. Cycowicz

Improvement in source memory performance throughout childhood is thought to be mediated by the development of executive control. As postretrieval control processes may be better time-locked to the recognition response rather than the retrieval cue, the development of processes underlying source memory was investigated with both stimulus- and response-locked event-related potentials (ERPs). These were recorded in children, adolescents, and adults during a recognition memory exclusion task. Green- and red-outlined pictures were studied, but were tested in black outline. The test requirement was to endorse old items shown in one study color (“targets”) and to reject new items along with old items shown in the alternative study color (“nontargets”). Source memory improved with age. All age groups retrieved target and nontarget memories as reflected by reliable parietal episodic memory (EM) effects, a stimulus-locked ERP correlate of recollection. Response-locked ERPs to targets and nontargets diverged in all groups prior to the response, although this occurred at an increasingly earlier time point with age. We suggest these findings reflect the implementation of attentional control mechanisms to enhance target memories and facilitate response selection with the greatest and least success, respectively, in adults and children. In adults only, response-locked ERPs revealed an early-onsetting parietal negativity for nontargets, but not for targets. This was suggested to reflect adults' ability to consistently inhibit prepotent target responses for nontargets. The findings support the notion that the development of source memory relies on the maturation of control processes that serve to enhance accurate selection of task-relevant memories.


2021 ◽  
Vol 118 (43) ◽  
pp. e2109208118
Author(s):  
Liyang Sai ◽  
Gabriele Bellucci ◽  
Chongxiang Wang ◽  
Genyue Fu ◽  
Julia A. Camilleri ◽  
...  

Numerous studies have sought proof of whether people are genuinely honest by testing whether cognitive control mechanisms are recruited during honest and dishonest behaviors. The underlying assumption is: Deliberate behaviors require cognitive control to inhibit intuitive responses. However, cognitive control during honest and dishonest behaviors can be required for other reasons than deliberation. Across 58 neuroimaging studies (1,211 subjects), we investigated different forms of honest and dishonest behaviors and demonstrated that many brain regions previously implicated in dishonesty may reflect more general cognitive mechanisms. We argue that the motivational/volitional dimension is central to deliberation and provide evidence that motivated dishonest behaviors recruit the perigenual anterior cingulate cortex. This work questions the view that cognitive control is a hallmark of dishonesty.


2020 ◽  
Author(s):  
Michael C. Freund ◽  
Julie M. Bugg ◽  
Todd S. Braver

AbstractProgress in understanding the neural bases of cognitive control has been supported by the paradigmatic color-word Stroop task, in which a target response (color name) must be selected over a more automatic, yet potentially incongruent, distractor response (word). From this platform, models of control have postulated complementary coding schemes: dorsomedial frontal cortex (DMFC) is proposed to evaluate control demand via incongruency-related coding, whereas dorsolateral prefrontal cortex (DLPFC) is proposed to implement control via goal and target-related coding. But, mapping these theorized schemes to measured neural activity within this task has been challenging. Here, we tested for these coding schemes relatively directly, by decomposing an event-related color-word Stroop task via representational similarity analysis (RSA). Three coding models were fit to the similarity structure of multi-voxel patterns of fMRI activity, acquired from 66 healthy, young-adult male and female humans. Incongruency coding was predominant in DMFC, whereas both target and incongruency coding were present with indistinguishable strength in DLPFC. Distractor coding, in contrast, was not detected within any frontoparietal region, but was instead strongly encoded within early visual cortex. Further, these coding schemes were differentially related to behavior: individuals with stronger DLPFC (and lateral posterior parietal cortex) target coding, but weaker DMFC incongruency coding, exhibited less behavioral Stroop interference. These results highlight the utility of the RSA framework for investigating neural mechanisms of cognitive control and point to several promising directions to extend the Stroop paradigm.Significance StatementHow the human brain enables cognitive control — the ability to override behavioral habits to pursue internal goals — has been a major focus of neuroscience research. This ability has been frequently investigated by using the Stroop color-word naming task. With the Stroop as a test-bed, many theories have proposed specific neuroanatomical dissociations, in which medial and lateral frontal brain regions underlie cognitive control by encoding distinct types of information. Yet providing a direct confirmation of these claims has been challenging. Here, we demonstrate that representational similarity analysis (RSA), which estimates and models the similarity structure of brain activity patterns, can successfully establish the hypothesized functional dissociations within the Stroop task. RSA may provide a useful approach for investigating cognitive control mechanisms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255430
Author(s):  
Arthur Prével ◽  
Ruth M. Krebs ◽  
Nanne Kukkonen ◽  
Senne Braem

Motivation signals have been shown to influence the engagement of cognitive control processes. However, most studies focus on the invigorating effect of reward prospect, rather than the reinforcing effect of reward feedback. The present study aimed to test whether people strategically adapt conflict processing when confronted with condition-specific congruency-reward contingencies in a manual Stroop task. Results show that the size of the Stroop effect can be affected by selectively rewarding responses following incongruent versus congruent trials. However, our findings also suggest important boundary conditions. Our first two experiments only show a modulation of the Stroop effect in the first half of the experimental blocks, possibly due to our adaptive threshold procedure demotivating adaptive behavior over time. The third experiment showed an overall modulation of the Stroop effect, but did not find evidence for a similar modulation on test items, leaving open whether this effect generalizes to the congruency conditions, or is stimulus-specific. More generally, our results are consistent with computational models of cognitive control and support contemporary learning perspectives on cognitive control. The findings also offer new guidelines and directions for future investigations on the selective reinforcement of cognitive control processes.


Author(s):  
Yael Salzer ◽  
Daniela Aisenberg ◽  
Tal Oron-Gilad ◽  
Avishai Henik

Cognitive control has been extensively studied using the auditory and visual modalities. In the current study, a tactile version of the Simon task was created in order to test control mechanisms in a modality that was less studied, to provide comparative and new information. A significant Simon effect – reaction time gap between congruent (i.e., stimulus and response in the same relative location) and incongruent (i.e., stimulus and response in opposite locations) stimuli – provided grounds to further examine both general and tactile-specific aspects of cognitive control in three experiments. By implementing a neutral condition and conducting sequential and distributional analysis, the present study: (a) supports two different independent mechanisms of cognitive control – reactive control and proactive control; (b) reveals facilitation and interference within the tactile Simon effect; and (c) proposes modality differences in activation and processing of the spatially driven stimulus-response association.


Sign in / Sign up

Export Citation Format

Share Document