The Relationship of Western Boundary Current Heat Transport and Storage to Midlatitude Ocean-Atmosphere Interaction

Author(s):  
Kathryn A. Kelly ◽  
Shenfti Dong
2020 ◽  
Vol 33 (2) ◽  
pp. 707-726 ◽  
Author(s):  
Paige E. Martin ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg ◽  
Andrew E. Kiss ◽  
James R. Munroe ◽  
...  

AbstractClimate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.


Oceanography ◽  
2010 ◽  
Vol 23 (4) ◽  
pp. 52-69 ◽  
Author(s):  
Dudley Chelton ◽  
Shang-Ping Xie

2016 ◽  
Author(s):  
Nir Y. Krakauer ◽  
Michael J. Puma ◽  
Benjamin I. Cook ◽  
Pierre Gentine ◽  
Larissa Nazarenko

Abstract. Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean-atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations of the equilibrium effect of contemporary irrigation geographic extent and intensity on climate with and without interactive sea surface temperatures. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. The interaction amplifies irrigation-driven standing wave patterns in the tropics and midlatitudes in our simulations, approximately doubling the global mean amplitude of surface temperature changes due to irrigation. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean. Attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.


1979 ◽  
Vol 18 (1) ◽  
pp. 1-20
Author(s):  
K. YA Roundratyev ◽  
YU. I. Rabinovich ◽  
F. M. Shulgina

En la formación del clima intervienen una serie de procesosos muy complejos que interaccionan en el sistema "atmósfera-océano-continentes-criósfera". el problema de clima y sus cambios originados naturalmente y por factores antropogénicos exige el seguimiento de un amplio conjunto de parámetros que caractericen no sólo al clima sino los rasgos propios de la atmósfera, océano, superficie terrestre y cubierta de hielo.La determinación del conjunto de parámetros requerido debe obtenerse a partir del modelado numérico dirigido a la planeación del sistema global para monitoreo del clima. Las restricciones sobre los datos observacionales son muy variables y fuertemente dependientes del modelo del clima utilizado. en base a estas consideraciones se presenta una estimación de los parámetros requeridos que integran el conjunto, se incluye precisión y resolución espacio-temporal. Se analizan las posibilidades de medición por los sistemas actuales, los ya diseñados y lo que se desarrollarán en los años ochentas. Finalmente, se evalúan los errores que se cometen utilizando microondas en la determinación de la temperatura de la cubierta de hielo y de la superficie del mar.


Sign in / Sign up

Export Citation Format

Share Document