flux correction
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Annika Reintges ◽  
Mojib Latif ◽  
Mohammad Hadi Bordbar ◽  
Wonsun Park

<p>Predictability of sea surface temperatures (SSTs) in the North Atlantic on timescales on several years and beyond is commonly attributed to buoyancy-forced changes of the Atlantic Meridional Overturning Circulation and associated poleward heat transport.</p><p>We examine the role of the wind stress anomalies in decadal hindcasts for the prediction of annual SST anomalies in the extratropical North Atlantic. A global climate model (KCM) is forced by ERA-interim wind stress anomalies over the period 1979-2017. The resulting climate states serve as initial conditions for decadal hindcasts.</p><p>We find significant skill in predicting annual SST anomalies over the central extratropical North Atlantic with anomaly correlation coefficients exceeding 0.6 at lead times of 4 to 7 years. The skill of annual SSTs is basically insensitive to the calendar month of initialization. We suggest that this skill is linked to a gyre-driven upper-ocean heat content anomaly that leads anomalous SSTs by several years.</p><p>Furthermore, another set of model experiments, employing a freshwater flux correction, will be assessed. Freshwater flux correction has been shown to improve the model’s mean state of North Atlantic surface properties and of the circulation. We will address the potentially improved predictability and underlying mechanisms.</p>


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5123
Author(s):  
Guo Chen ◽  
Xingqi Min ◽  
Qunqun Zhang ◽  
Zhiqiang Zhang ◽  
Meiqiang Wen ◽  
...  

Phenol red (PR) is a widely used marker for water flux correction in studies of in situ perfusion, in which intestinal absorption usually leads to the underestimation of results. In this paper, we propose a novel marker polyethylene glycol (PEG)-PR (i.e., PR modified by PEGylation) with less permeability and evaluate its application in an in situ perfusion model in rats. PEG-PR was synthesized by the chemical conjunction of polyethylene glycol-4k/5k (PEG-4k/5k) and PR. The synthesized PEG-PR was then characterized using 1H-NMR, 13C-NMR, ultraviolet (UV), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analyses. The low permeability of PEG-PR was assessed using everted gut sac (EGS) methods. The apparent permeability coefficients (Papp, 3–8 × 10−7 cm/s) of PEG4k/5k-PR exhibited a nearly 15-fold reduction compared to that of PR. The different concentrations of PEG4k/5k-PR did not contribute to the Papp value or cumulative permeable percentage (about 0.02–0.06%). Furthermore, the larger molecular weight due to PEGylation (PEG5k-PR) enhanced the nonabsorbable effect. To evaluate the potential application of the novel marker, atenolol, ketoprofen, and metoprolol, which represent various biopharmaceutics classification system (BCS) classes, were selected as model drugs for the recirculation perfusion method. The water flux corrected by PEG4k/5k-PR reflected the accuracy due to the nonabsorbable effect, while the effective intestinal membrane permeability (Peff) of atenolol corrected by PEG4k/5k-PR showed a statistically significant increase (p < 0.05) in different intestinal segments. In conclusion, PEG-PR is a promising marker for the permeability estimation when using the in situ perfusion model in rats.


2020 ◽  
Vol 419 ◽  
pp. 109696
Author(s):  
Ben C. Yee ◽  
Samuel S. Olivier ◽  
Terry S. Haut ◽  
Milan Holec ◽  
Vladimir Z. Tomov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document