scholarly journals Role of convection in winter mixed layer formation in the Gulf of Maine, February 1987

2002 ◽  
Vol 107 (C12) ◽  
pp. 22-1-22-18 ◽  
Author(s):  
Prashant Mupparapu ◽  
Wendell S. Brown
1984 ◽  
Vol 89 (C1) ◽  
pp. 637 ◽  
Author(s):  
A. L. Gordon ◽  
C. T. A. Chen ◽  
W. G. Metcalf

2017 ◽  
Vol 430 (2) ◽  
pp. 346-361 ◽  
Author(s):  
Aldine R. Amiel ◽  
Hereroa Johnston ◽  
Taylor Chock ◽  
Paul Dahlin ◽  
Marta Iglesias ◽  
...  

2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.


2011 ◽  
Vol 41 (1) ◽  
pp. 42-66 ◽  
Author(s):  
Kathleen Dohan ◽  
Russ E. Davis

Abstract Upper-ocean dynamics analyzed from mooring-array observations are contrasted between two storms of comparable magnitude. Particular emphasis is put on the role of the transition layer, the strongly stratified layer between the well-mixed upper layer, and the deeper more weakly stratified region. The midlatitude autumn storms occurred within 20 days of each other and were measured at five moorings. In the first storm, the mixed layer follows a classical slab-layer response, with a steady deepening during the course of the storm and little mixing of the thermocline beneath. In the second storm, rather than deepening, the mixed layer shoals while intense near-inertial waves are resonantly excited within the mixed layer. These create a large shear throughout the transition layer, generating turbulence that broadens the transition layer. Details of the space–time structure of the frequencies in both short waves and near-inertial waves are presented. Small-scale waves are excited within the transition layer. Their frequencies change with time and there are no clear peaks at harmonics of inertial or tidal frequencies. Wavelet transforms of the inertial oscillations show the evolution as a spreading in frequency, a deepening of the core into the transition layer, and a shift off the inertial frequency. A second near-inertial energy core appears below the transition layer at all moorings coincident with a rapid decay of mixed layer currents. An overall result is that direct wind-generated motions extend to the depth of the transition layer. The transition layer is a location of enhanced wave activity and enhanced shear-driven mixing.


Clay Minerals ◽  
1997 ◽  
Vol 32 (1) ◽  
pp. 29-40 ◽  
Author(s):  
K. A. Carrado ◽  
P. Thiyagarajan ◽  
K. Song

AbstractA method has been developed to synthesize organo-hectorite clays directly from a Mg-silicate gel containing organic or organometallic molecules that are expected to be incorporated within the interlayer space. Complete crystallization occurs upon aqueous reflux for 48 h. The progress of clay layer formation was monitored by X-ray powder diffraction (XRD), differential thermal gravimetry (DTG), and infrared (IR) spectroscopy. Evidence of clay XRD peaks occurs after just 4 h of hydrothermal treatment, and Mg(OH)2 is no longer observable after 14 h. Observable changes in DTG and IR occur at about this time as well. Warren line-shape analysis of the 110 reflection indicates that when growth is complete the clay lamellae are on average ∼50% and 25% of the size of natural hectorites and montmorillonites, respectively. The N2 BET surface areas for all materials are also compared. Small angle neutron scattering shows that addition of tetraethyl ammonium (TEA) ions does not alter the structural integrity over that of the purely inorganic form of Li-hectorite, but that use of a cationic polymer does significantly alter the microstructure. The effect of temperature is critical, for at room temperature only the layered Mg hydroxide mineral brucite crystallizes unless very long time scales are used. The crystallizations carried out at room temperature show that clay will form after about 3 months, but that the presence of organics (at least TEA) acts to hinder this process greatly. The role of the organic molecules on silicate clay layer formation is compared with the role of organics in zeolite synthesis.


Sign in / Sign up

Export Citation Format

Share Document