scholarly journals Diagnosing Natural Variability of North Atlantic Water Masses in HadCM3

2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.

2019 ◽  
Vol 77 (2) ◽  
pp. 753-779 ◽  
Author(s):  
Pragallva Barpanda ◽  
Tiffany A. Shaw

Abstract The observed zonal-mean extratropical storm tracks exhibit distinct hemispheric seasonality. Previously, the moist static energy (MSE) framework was used diagnostically to show that shortwave absorption (insolation) dominates seasonality but surface heat fluxes damp seasonality in the Southern Hemisphere (SH) and amplify it in the Northern Hemisphere (NH). Here we establish the causal role of surface fluxes (ocean energy storage) by varying the mixed layer depth d in zonally symmetric 1) slab-ocean aquaplanet simulations with zero ocean energy transport and 2) energy balance model (EBM) simulations. Using a scaling analysis we define a critical mixed layer depth dc and hypothesize 1) large mixed layer depths (d > dc) produce surface heat fluxes that are out of phase with shortwave absorption resulting in small storm track seasonality and 2) small mixed layer depths (d < dc) produce surface heat fluxes that are in phase with shortwave absorption resulting in large storm track seasonality. The aquaplanet simulations confirm the large mixed layer depth hypothesis and yield a useful idealization of the SH storm track. However, the small mixed layer depth hypothesis fails to account for the large contribution of the Ferrel cell and atmospheric storage. The small mixed layer limit does not yield a useful idealization of the NH storm track because the seasonality of the Ferrel cell contribution is opposite to the stationary eddy contribution in the NH. Varying the mixed layer depth in an EBM qualitatively supports the aquaplanet results.


2020 ◽  
Vol 77 (9) ◽  
pp. 3139-3160
Author(s):  
Chieh-Jen Cheng ◽  
Chun-Chieh Wu

Abstract This study examines the role of surface heat fluxes, particularly in relation to the wind-induced surface heat exchange (WISHE) mechanism, in the rapid intensification (RI) of tropical cyclones (TCs). Sensitivity experiments with capped surface fluxes and thus reduced WISHE exhibit delayed RI and weaker peak intensity, while WISHE could affect the evolutions of TCs both before and after the onset of RI. Before RI, more WISHE leads to faster increase of equivalent potential temperature in the lower levels, resulting in more active and stronger convection. In addition, TCs in experiments with more WISHE reach a certain strength earlier, before the onset of RI. During the RI period, more surface heat fluxes could provide convective instability in the lower levels, and cause a consequent development in the convective activity. More efficient intensification in a TC is found with higher surface heat fluxes and larger inertial stability, leading to a stronger peak intensity, more significant and deeper warm core in TC center, and the axisymmetrization of convection in the higher levels. In both stages, different levels of WISHE alter the thermodynamic environment and convective-scale processes. In all, this study supports the crucial role of WISHE in affecting TC intensification rate for TCs with RI.


2018 ◽  
Vol 31 (21) ◽  
pp. 8719-8744 ◽  
Author(s):  
Helen R. Pillar ◽  
Helen L. Johnson ◽  
David P. Marshall ◽  
Patrick Heimbach ◽  
So Takao

Atmospheric reanalyses are commonly used to force numerical ocean models, but despite large discrepancies reported between different products, the impact of reanalysis uncertainty on the simulated ocean state is rarely assessed. In this study, the impact of uncertainty in surface fluxes of buoyancy and momentum on the modeled Atlantic meridional overturning at 25°N is quantified for the period January 1994–December 2011. By using an ocean-only climate model and its adjoint, the space and time origins of overturning uncertainty resulting from air–sea flux uncertainty are fully explored. Uncertainty in overturning induced by prior air–sea flux uncertainty can exceed 4 Sv (where 1 Sv ≡ 106 m3 s−1) within 15 yr, at times exceeding the amplitude of the ensemble-mean overturning anomaly. A key result is that, on average, uncertainty in the overturning at 25°N is dominated by uncertainty in the zonal wind at lags of up to 6.5 yr and by uncertainty in surface heat fluxes thereafter, with winter heat flux uncertainty over the Labrador Sea appearing to play a critically important role.


2009 ◽  
Vol 6 (3) ◽  
pp. 4619-4635 ◽  
Author(s):  
W. Ma ◽  
Y. Ma ◽  
Z. Hu ◽  
B. Su ◽  
J. Wang ◽  
...  

Abstract. Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.


2006 ◽  
Vol 19 (7) ◽  
pp. 1126-1148 ◽  
Author(s):  
Chris Old ◽  
Keith Haines

Abstract A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3). Analysis of the temporal and spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air–sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18°C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16° and 14°C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical–subtropical water mass exchange mechanism beneath the trade wind belt (south of 20°N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.


2012 ◽  
Vol 25 (1) ◽  
pp. 350-362 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Rui M. Ponte

Abstract Ocean heat budgets and transports are diagnosed to elucidate the importance of general circulation changes to Atlantic Ocean heat storage rates. The focus is on low- and midlatitude regions and on seasonal and interannual time scales. An estimate of the ocean state over 1993–2004, produced by a coarse-resolution general circulation model fit to observations via the method of Lagrange multipliers, is used. Meridional heat transports are first decomposed into contributions from time-mean and time-variable velocity and temperature and second from zonally symmetric baroclinic (overturning, including Ekman) and zonally asymmetric (gyre and other spatially correlated) circulations. Heat storage rates are then ascribed to ocean–atmosphere heat exchanges, diffusive mixing, and advective processes related to the various components of the meridional heat transport. Results show that seasonal heat storage changes generally represent a local response to surface heat inputs, but seasonal advective changes are also important near the equator. Interannual heat storage rate anomalies are mostly due to advection in tropical regions, whereas both surface heat fluxes and advection contribute at higher latitudes. Low-latitude advection can be primarily attributed to zonally symmetric baroclinic circulations, but temperature variations and zonally asymmetric flows can contribute elsewhere. A relationship between interannual heat storage rates in the equatorial Atlantic’s top 100 m and meridional heat transport associated with the zonally symmetric baroclinic flow is observed; however, due in part to the role of shallow advective processes at these latitudes, any direct relationship between sea surface temperature variability and heat transport changes associated with intermediate or deep meridional overturning circulations is not clear.


2021 ◽  
Author(s):  
Mareike Körner ◽  
Peter Brandt ◽  
Marcus Dengler

<p>The Angolan shelf system represents a highly productive ecosystem that exhibits pronounced seasonal variability. Productivity peaks in austral winter when seasonally prevailing upwelling favorable winds are weakest. Thus, other processes than local wind-driven upwelling contribute to the near-coastal cooling and nutrient supply during this season. Possible processes that lead to changes of the mixed-layer heat content does not only include local mechanism but also the passage of remotely forced coastally trapped waves. Understanding the driving mechanism of changes in the mixed-layer heat content that may be locally or remotely forced are vital for understanding of upward nutrient supply and biological productivity off Angola. Here, we investigate the seasonal mixed layer heat budget by analyzing atmospheric and oceanic causes for heat content variability. We calculate monthly estimates of surface heat fluxes, horizontal advection from near-surface velocities, horizontal eddy advection, and vertical entrainment. Additionally, diapycnal heat fluxes at the mixed-layer base are determined from shipboard and glider microstructure data. The results are discussed in reference to the variability of the eastern boundary circulation, surface heat fluxes and wind forcing.</p>


2009 ◽  
Vol 13 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Weiqiang Ma ◽  
Yaoming Ma ◽  
Maoshan Li ◽  
Zeyong Hu ◽  
Lei Zhong ◽  
...  

Abstract. Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), vegetation coverage, Leaf Area Index (LAI), net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet), located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature) and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD) is less than 10% in the validation sites. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface variables and land surface heat fluxes using the ASTER data and filed observation over the study area.


2011 ◽  
Vol 68 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Robert van Driel ◽  
Harm J. J. Jonker

In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with different frequencies and amplitudes and study the response of the boundary layer in terms of transfer functions. To this end both a mixed layer model (MLM) and a large-eddy simulation (LES) model are used; the latter is used to evaluate the predictive quality of the mixed layer model. The mixed layer model performs generally quite well for slow changes in the surface heat flux and provides analytical understanding of the transfer characteristics of the boundary layer such as amplitude and phase lag. For rapidly changing surface fluxes (i.e., changes within a time frame comparable to the large eddy turnover time), it proves important to account for the time it takes for the information to travel from the surface to higher levels of the boundary layer such as the inversion zone. As a follow-up to a 1997 study by Sorbjan, who showed that the conventional convective velocity scale is inadequate as a scaling quantity during the decay phase, this paper addresses the issue of defining, in (generic) transitional situations, a velocity scale that is solely based on the surface heat flux and its history.


Sign in / Sign up

Export Citation Format

Share Document