scholarly journals Stable isotope composition of water vapor in the atmospheric boundary layer above the forests of New England

1999 ◽  
Vol 104 (D9) ◽  
pp. 11657-11673 ◽  
Author(s):  
Hui He ◽  
Ronald B. Smith
1992 ◽  
Vol 28 (5) ◽  
pp. 1407-1416 ◽  
Author(s):  
J. P. Brunel ◽  
H. J. Simpson ◽  
A. L. Herczeg ◽  
R. Whitehead ◽  
G. R. Walker

2015 ◽  
Vol 523 ◽  
pp. 781-789 ◽  
Author(s):  
Grzegorz Skrzypek ◽  
Adam Mydłowski ◽  
Shawan Dogramaci ◽  
Paul Hedley ◽  
John J. Gibson ◽  
...  

2016 ◽  
Author(s):  
Harald Sodemann ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Mark Bitter ◽  
Ulrich Corsmeier ◽  
...  

Abstract. Stable water isotopes are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and airmass mixing processes. With the recent advent of fast laser-based spectroscopic methods it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at high temporal resolution, enabling to tremendously extend the measurement data base in space and time. Here we present the first set of airborne spectroscopic stable water isotopes measurements over the western Mediterranean. Measurements have been acquired by a customised Picarro L2130-i cavity-ring down spectrometer deployed onboard of the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 field campaign in Corsica, France during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15–30 s, resulting in an average horizontal resolution of about 1–2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement in most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions of the stable isotope parameters δD, δ18O and d-excess during the study period. A time-averaged perspective of the vertical stable isotope composition reveals for the first time the mean vertical structure of stable water isotopes over the Mediterranean at high resolution. A d-excess minimum in the overall average profile is reached in the region of the boundary layer top due to precipitation evaporation, bracketed by higher d-excess values near the surface due to non-equilibrium fractionation and above the boundary layer due to the non-linearity of the d-excess definition. Repeated flights along the same pattern reveals pronounced day-to-day variability due to changes in the large-scale circulation. During a period marked by a strong inversion at the top of the marine boundary layer, vertical gradients in stable isotopes reached up to 25.4 ‰ 100 m−1 for δD.


2016 ◽  
Author(s):  
T. J. Griffis ◽  
J. D. Wood ◽  
J. M. Baker ◽  
X. Lee ◽  
K. Xiao ◽  
...  

Abstract. Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understanding feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor from a very tall tower (185 m) in the Upper Midwest, United States to help diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for the region. Models and cross wavelet analyses were used to assess the importance of Rayleigh, evapotranspiration (ET), and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a very large seasonal amplitude (mean monthly δ18Ov ranged from −40.1 to −15.5 ‰ and δ2Hv ranged from −278.7 to −109.1 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio at the annual time-scale. However, this relation was strongly modulated by ET and PBL entrainment processes at time-scales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dx) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that ET often leads changes in dx, confirming that it is a potential tracer of regional ET. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional ET. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratios events (> 25 mmol mol−1) indicate that regional ET can account for 40 % to 60 % of the PBL water vapor. These estimates are in relatively good agreement with that derived from numerical weather model simulations. This relatively large fraction of ET-derived water vapor implies that ET has an important impact on the precipitation recycling ratio within the region. Based on multiple constraints, we estimate that the summer season recycling fraction is about 30 %, indicating a potentially important link with convective precipitation.


2007 ◽  
Vol 298 (1-2) ◽  
pp. 31-45 ◽  
Author(s):  
J. R. Gat ◽  
D. Yakir ◽  
G. Goodfriend ◽  
P. Fritz ◽  
P. Trimborn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document