scholarly journals Outgoing longwave radiation and cloud radiative forcing of the Tibetan Plateau

2000 ◽  
Vol 105 (D11) ◽  
pp. 14863-14872 ◽  
Author(s):  
Wenying Su ◽  
Jietai Mao ◽  
Fei Ji ◽  
Yu Qin
2021 ◽  
Author(s):  
Xiaorui Niu ◽  
Jianping Tang ◽  
Deliang Chen ◽  
Shuyu Wang ◽  
Tinghai Ou ◽  
...  

AbstractTo explore the driving mechanisms of elevation-dependent warming (EDW) over the Tibetan Plateau (TP), the output from a suite of numerical experiments with different cumulus parameterization schemes (CPs) under the Coordinated Regional Climate Downscaling Experiments-East Asia (CORDEX-EA-II) project is examined. Results show that all experiments can broadly capture the observed temperature distributions over the TP with consistent cold biases, and the spread in temperature simulations commonly increases with elevation with the maximum located around 4000–5000 m. Such disagreements among the temperature simulations could to a large extent be explained by their spreads in the surface albedo feedback (SAF). All the experiments reproduce the observed EDW below 5000 m in winter but fail to capture the observed EDW above 4500 m in spring. Further analysis suggests that the simulated EDW during winter is mainly caused by the SAF, and the clear-sky downward longwave radiation (LWclr) plays a secondary role in shaping EDW. The models’ inability in simulating EDW during spring is closely related to the SAF and the surface cloud radiative forcing (CRFs). Furthermore, the magnitude and structure of the simulated EDW are sensitive to the choice of CPs. Different CPs generate diverse snow cover fractions, which can modulate the simulated SAF and its effect on EDW. Also, the CPs show great influence on the LWclr via altering the low-level air temperature. Additionally, the mechanism for different temperature changes among the experiments varies with altitudes during summer and autumn, as the diverse temperature changes appear to be caused by the LWclr for the low altitudes while by the SAF for the middle-high altitudes.


2020 ◽  
Vol 20 (10) ◽  
pp. 5923-5943 ◽  
Author(s):  
Meixin Zhang ◽  
Chun Zhao ◽  
Zhiyuan Cong ◽  
Qiuyan Du ◽  
Mingyue Xu ◽  
...  

Abstract. Most previous modeling studies about black carbon (BC) transport and its impact over the Tibetan Plateau (TP) conducted simulations with horizontal resolutions coarser than 20 km that may not be able to resolve the complex topography of the Himalayas well. In this study, the two experiments covering all of the Himalayas with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) at the horizontal resolution of 4 km but with two different topography datasets (4 km complex topography and 20 km smooth topography) are conducted for pre-monsoon season (April 2016) to investigate the impacts of topography on modeling the transport and distribution of BC over the TP. Both experiments show the evident accumulation of aerosols near the southern Himalayas during the pre-monsoon season, consistent with the satellite retrievals. The observed episode of high surface BC concentration at the station near Mt. Everest due to heavy biomass burning near the southern Himalayas is well captured by the simulations. The simulations indicate that the prevailing upflow across the Himalayas driven by the large-scale westerly and small-scale southerly circulations during the daytime is the dominant transport mechanism of southern Asian BC into the TP, and it is much stronger than that during the nighttime. The simulation with the 4 km topography resolves more valleys and mountain ridges and shows that the BC transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is more efficient. The complex topography results in stronger overall cross-Himalayan transport during the simulation period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. This results in 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the TP from the simulation with the 4 km complex topography than that with the 20 km smoother topography. The different topography also leads to different distributions of snow cover and BC forcing in snow. This study implies that the relatively smooth topography used by the models with resolutions coarser than 20 km may introduce significant negative biases in estimating light-absorbing aerosol radiative forcing over the TP during the pre-monsoon season. Highlights. The black carbon (BC) transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is much more efficient during the pre-monsoon season. The complex topography results in stronger overall cross-Himalayan transport during the study period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. The complex topography generates 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the Tibetan Plateau (TP) than the smoother topography, which implies that the smooth topography used by the models with relatively coarse resolution may introduce significant negative biases in estimating BC radiative forcing over the TP during the pre-monsoon season. The different topography also leads to different distributions of snow cover and BC forcing in snow over the TP.


2005 ◽  
Vol 18 (22) ◽  
pp. 4660-4668 ◽  
Author(s):  
Jian Li ◽  
Rucong Yu ◽  
Tianjun Zhou ◽  
Bin Wang

Abstract The temperature shift over the eastern flank of the Tibetan Plateau is examined using the last 50 yr of Chinese surface station observations. It was found that a strong cooling shift occurs in early spring (March and April) and late summer (July, August, and September) in contrast to the warming shift in other seasons. The cause of the March–April (MA) cooling is investigated in this study. The MA cooling shift on the lee side of the Tibetan Plateau is found to be not a local phenomenon, but rather it is associated with an eastward extension of a cooling signal originating from North Africa that is related to the North Atlantic Oscillation (NAO) in the previous winter. The midtropospheric westerlies over the North Atlantic and North Africa tend to intensify during positive NAO phases. The enhanced westerlies, after passing over the Tibetan Plateau, result in strengthened ascending motion against the lee side of the plateau, which favors the formation of midlevel stratiform clouds. The increased amount of stratus clouds induces a negative net cloud–radiative forcing, which thereby cools the surface air and triggers a positive cloud–temperature feedback. In this way, the cooling signal from the upstream could “jump” over the Tibetan Plateau and leave a footprint on its lee side. The continental stratiform cloud–climate feedback plays a significant role in the amplification of the cooling shift downstream of the Tibetan Plateau.


2013 ◽  
Vol 13 (8) ◽  
pp. 4057-4072 ◽  
Author(s):  
K. W. Bowman ◽  
D. T. Shindell ◽  
H. M. Worden ◽  
J.F. Lamarque ◽  
P. J. Young ◽  
...  

Abstract. We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5–20 ppb) in the Southern Hemisphere (SH) and modest high bias (5–10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005–2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120 mW m−2 OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39 ± 41 m Wm−2 relative to TES data. We show that there is a correlation (R2 = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750–2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100 m Wm−2. Removing these models leads to a mean ozone radiative forcing of 394 ± 42 m Wm−2. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 ± 60 m Wm−2 derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.


2016 ◽  
Vol 29 (13) ◽  
pp. 4939-4947 ◽  
Author(s):  
R. J. Bantges ◽  
H. E. Brindley ◽  
X. H. Chen ◽  
X. L. Huang ◽  
J. E. Harries ◽  
...  

Abstract Differences between Earth’s global mean all-sky outgoing longwave radiation spectrum as observed in 1970 [Interferometric Infrared Spectrometer (IRIS)], 1997 [Interferometric Monitor for Greenhouse Gases (IMG)], and 2012 [Infrared Atmospheric Sounding Instrument (IASI)] are presented. These differences are evaluated to determine whether these are robust signals of multidecadal radiative forcing and hence whether there is the potential for evaluating feedback-type responses. IASI–IRIS differences range from +2 K in the atmospheric window (800–1000 cm−1) to −5.5 K in the 1304 cm−1 CH4 band center. Corresponding IASI–IMG differences are much smaller, at 0.2 and −0.8 K, respectively. More noticeably, IASI–IRIS differences show a distinct step change across the 1042 cm−1 O3 band that is not seen in IASI–IMG comparisons. This step change is a consequence of a difference in behavior when moving from colder to warmer scenes in the IRIS data compared to IASI and IMG. Matched simulations for the relevant periods using ERA reanalyses mimic the spectral behavior shown by IASI and IMG rather than by IRIS. These findings suggest that uncertainties in the spectral response of IRIS preclude the use of these data for quantitative assessments of forcing and feedback processes.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Zhongping Shen ◽  
Jun Shi ◽  
Yadong Lei

Based on the detrended fluctuation analysis (DFA) method, scaling behaviors of the daily outgoing longwave radiation (OLR) from 1979 to 2015 over the Tibetan Plateau (TP) and the Indian Monsoon Region (IMR) are analyzed. The results show that there is long-term memory for the OLR time series over the TP and IMR. The long-range memory behaviors of OLR over TP are stronger than those over IMR. The averaged values of the scaling exponents over TP and IMR are 0.71 and 0.64; the maximum values in the two regions are 0.81 and 0.75; the minimum values are 0.59 and 0.58. The maximum frequency counts for scaling exponents occur in the range of 0.625 and 0.675 both in TP and in IMR. The spatial distribution of the scaling exponents of the OLR sequence is closely related to the conditions of climatic high cloud cover in the two areas. The high cloud cover over TP is obviously less than that of IMR. In addition, the scaling behaviors of OLR over TP and IMR are caused by the fractal characteristics of time series, which is further proved by randomly disrupting the time series to remove trends and correlation.


2010 ◽  
Vol 10 (9) ◽  
pp. 21615-21651 ◽  
Author(s):  
M. Kopacz ◽  
D. L. Mauzerall ◽  
J. Wang ◽  
E. M. Leibensperger ◽  
D. K. Henze ◽  
...  

Abstract. The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and estimate the forcing due to the BC induced snow-albedo effect at about 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo accelerates glacier melting. Our analysis can help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.


2020 ◽  
Vol 20 (3) ◽  
pp. 1507-1529 ◽  
Author(s):  
Zhiyuan Hu ◽  
Jianping Huang ◽  
Chun Zhao ◽  
Qinjian Jin ◽  
Yuanyuan Ma ◽  
...  

Abstract. Mineral dust plays an important role in the climate of the Tibetan Plateau (TP) by modifying the radiation budget, cloud macro- and microphysics, precipitation, and snow albedo. Meanwhile, the TP, with the highest topography in the world, can affect intercontinental transport of dust plumes and induce typical distribution characteristics of dust at different altitudes. In this study, we conduct a quasi-global simulation to investigate the characteristics of dust source contribution and transport over the TP at different altitudes by using a fully coupled meteorology–chemistry model, the Weather Research and Forecasting model with chemistry (WRF-Chem), with a tracer-tagging technique. Generally, the simulation reasonably captures the spatial distribution of satellite-retrieved dust aerosol optical depth (AOD) at different altitudes. Model results show that dust particles are emitted into atmosphere through updrafts over major desert regions and then transported to the TP. The East Asian dust (mainly from the Gobi and Taklamakan deserts) is transported southward and is lifted up to the TP, contributing a mass loading of 50 mg m−2 at a height of 3 km and 5 mg m−2 at a height of 12 km over the northern slope of the TP. Dust from North Africa and the Middle East are concentrated over both of the northern and southern slopes below 6 km, where mass loadings range from 10 to 100 and 1 to 10 mg m−2 below 3 km and above 9 km, respectively. As the dust is transported to the north and over the TP, mass loadings are 5–10 mg m−2 above a height of 6 km. The dust mass flux carried from East Asia to the TP is 7.9 Tg yr−1, mostly occurring at heights of 3–6 km. The dust particles from North Africa and the Middle East are transported eastward following the westerly jet and then are carried into the TP at the west side with dust mass fluxes of 7.8 and 26.6 Tg yr−1, respectively. The maximum mass flux of the North African dust mainly occurs at 0–3 km (3.9 Tg yr−1), while the Middle Eastern dust occurs at 6–9 km (12.3 Tg yr−1). The dust outflow occurs on the east side (−17.89 Tg yr−1) and south side (−11.22 Tg yr−1) of the TP, with a peak value (8.7 Tg yr−1) at 6–9 km. Moreover, the dust (by mass) is concentrated within the size range of 1.25–5.0 µm and the dust (by particle number) is concentrated in the size range of 0.156–1.25 µm. Compared with other aerosols, the dust contributes to more than 50 % of the total AOD over the TP. The direct radiative forcing induced by the dust is −1.28 W m−2 at the top of the atmosphere (cooling), 0.41 W m−2 in the atmosphere (warming), and −1.68 W m−2 at the surface (cooling). Our quantitative analyses of the dust contributions from different source regions and the associated radiative forcing can help us to better understand the role of dust on the climate over the TP and surrounding regions.


2019 ◽  
Vol 124 (21) ◽  
pp. 11086-11102 ◽  
Author(s):  
Lei Zhong ◽  
Mijun Zou ◽  
Yaoming Ma ◽  
Ziyu Huang ◽  
Kepiao Xu ◽  
...  

2021 ◽  
Author(s):  
Lirong Ding ◽  
Zhiyong Long ◽  
Ji Zhou ◽  
Shaofei Wang ◽  
Xiaodong Zhang

<p>The downward longwave radiation (DLR) is a critical parameter for radiation balance, energy budget, and water cycle studies at regional and global scales. The accurate estimation of the all-weather DLR with a high temporal resolution is important for the estimation of the surface net radiation and evapotranspiration. However, the most DLR products involve instantaneous DLR estimates based on polar orbiting satellite data under clear-sky conditions. To obtain an in-depth understanding of the performances of different models in the estimation of the DLR over the Tibetan Plateau, which is a focus area of climate change study, this study tested eight methods under clear-sky conditions and six methods under cloudy conditions based on ground-measured data. The results show that the Dilley and O’Brien model and the Lhomme model are most suitable under clear-sky conditions and cloudy conditions, respectively. For the Dilley and O’Brien model, the average root mean square error (RMSE) of the DLR under clear-sky conditions is approximately 22.5 W/m<sup>2</sup> at nine ground sites; for the Lhomme model, the average RMSE is approximately 23.2 W/m<sup>2</sup>. Based on the estimated cloud fraction and meteorological data provided by the China land surface data assimilation system (CLDAS), the hourly all-weather daytime DLR with 0.0625° over the Tibetan Plateau was estimated. The results show that the average RMSE of the estimated hourly all-weather DLR was approximately 26.4 W/m<sup>2</sup>. With the combined all-weather DLR model, the hourly all-weather daytime DLR dataset with a 0.0625° resolution from 2008 to 2016 over the Tibetan Plateau was generated. This dataset can better contribute to studies associated with the radiation balance and energy budget, water cycle, and climate change over the Tibetan Plateau.</p>


Sign in / Sign up

Export Citation Format

Share Document