scholarly journals Large-eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: May 18, 1998, FIRE/SHEBA case study

2001 ◽  
Vol 106 (D14) ◽  
pp. 15113-15122 ◽  
Author(s):  
Hongli Jiang ◽  
Graham Feingold ◽  
William R. Cotton ◽  
Peter G. Duynkerke
2016 ◽  
Author(s):  
Julia Burkart ◽  
Megan D. Willis ◽  
Heiko Bozem ◽  
Jennie L. Thomas ◽  
Kathy Law ◽  
...  

Abstract. The Arctic is extremely sensitive to climate change. Shrinking sea ice extent increases the area covered by open ocean during Arctic summer, which impacts the surface albedo and aerosol and cloud properties among many things. In this context extensive aerosol measurements (aerosol composition, particle number and size, cloud condensation nuclei, and trace gases) were made during 11 flights of the NETCARE July, 2014 airborne campaign conducted from Resolute Bay, Nunavut (74N, 94W). Flights routinely included vertical profiles from about 60 to 3000 m a.g.l. as well as several low-level horizontal transects over open ocean, fast ice, melt ponds, and polynyas. Here we discuss the vertical distribution of ultrafine particles (UFP, particle diameter, dp: 5–20 nm), size distributions of larger particles (dp: 20 nm to 1 μm), and cloud condensation nuclei (CCN, supersaturation = 0.6 %) in relation to meteorological conditions and underlying surfaces. UFPs were observed predominantly within the boundary layer, where concentrations were often several hundreds to a few thousand particles per cubic centimeter. Occasionally, particle concentrations below 10 cm−3 were found. The highest UFP concentrations were observed above open ocean and at the top of low-level clouds, whereas numbers over ice-covered regions were substantially lower. Overall, UFP formation events were frequent in a clean boundary layer with a low condensation sink. In a few cases this ultrafine mode extended to sizes larger than 40 nm, suggesting that these UFP can grow into a size range where they can impact clouds and therefore climate.


2020 ◽  
Author(s):  
Ulrike Egerer ◽  
André Ehrlich ◽  
Matthias Gottschalk ◽  
Roel A. J. Neggers ◽  
Holger Siebert ◽  
...  

Abstract. Specific humidity inversions occur frequently in the Arctic. The formation of these inversions is often associated with large scale advection of humid air. However, small-scale boundary layer processes interacting with the humidity inversions are not fully understood yet. In this study, we analyze a three-day period of a persistent layer of increased specific humidity above a stratocumulus cloud observed during an Arctic field campaign in June 2017. The tethered balloon system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) recorded high-resolution vertical profile measurements of turbulence and radiation in the atmospheric boundary layer. We find that the humidity inversion and the cloud layer are coupled by eddy dissipation, extending above the cloud boundary and linking both layers through turbulent mixing. One case reveals a strong negative virtual sensible heat flux at cloud top (eddy covariance estimate of −15 W/m2), indicating entrainment of humid air from above into the cloud layer. Large Eddy Simulations (LES) based on field campaign data are conducted to supplement the flux measurements. Independent experiments for two days confirm the observed entrainment of humid air, reproducing the observed negative turbulent fluxes of heat and moisture at cloud top. The LES realizations suggest that in the presence of a humidity layer the cloud layer remains thicker and the inversion height is slightly raised, reproducing results from previous idealized LES studies. While this acts to prevent cloud collapse, it remains unclear how the additional moisture is processed in the cloud and how exactly it contributes to the longevity of Arctic cloud layers.


2020 ◽  
Author(s):  
Jan Chylik ◽  
Stephan Mertes ◽  
Roel Neggers

<p>Arctic mixed-phase clouds are still not properly represented in weather forecast and climate models. Recent field campaigns in the Arctic have successfully probed low level mixed-phase clouds, however it remains difficult to gain understanding of this complex system from observational datasets alone. Complementary high-resolution simulations, properly constrained by relevant measurements, can serve as a virtual laboratory that provides a deeper insight into a developing boundary layer in the Arctic.</p><p><br>Our study focus on the impact of variability in cloud condensation nuclei (CCN) concentrations on the turbulence in Arctic mixed-phase clouds. Large-Eddy Simulations of convective mixed-phase clouds over open water were performed as observed during the ACLOUD campaign, which took place in Fram Strait west of Svalbard in May and June 2017. The Dutch Atmospheric Large Eddy Simulation (DALES) is used including a well-established double-moment mixed-phase microphysics scheme of Seifert & Beheng.</p><p><br>The results highlight various impact mechanisms of CCN on the boundary layer thermodynamic state, turbulence, and clouds. Lower CCN concentrations generally lead to decreased turbulence near the cloud top. However, they can also enhance the turbulence in the lower part of the boundary layer due to increased amount of sublimation of ice hydrometeors. Further implications for the role of mixed-phase clouds in the Arctic Amplification will be discussed.</p>


2020 ◽  
Vol 1618 ◽  
pp. 062038
Author(s):  
Lawrence C. Cheung ◽  
Colleen M. Kaul ◽  
Alan S. Hsieh ◽  
Myra L. Blaylock ◽  
Matthew J. Churchfield

2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


Sign in / Sign up

Export Citation Format

Share Document