scholarly journals A three-dimensional study of a crustal low velocity region beneath the 9°03′N overlapping spreading center

2003 ◽  
Vol 30 (2) ◽  
Author(s):  
S. Bazin ◽  
A. J. Harding ◽  
G. M. Kent ◽  
J. A. Orcutt ◽  
S. C. Singh ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


1976 ◽  
Vol 66 (2) ◽  
pp. 501-524
Author(s):  
Keiiti Aki ◽  
Anders Christoffersson ◽  
Eystein S. Husebye

abstract Using P-wave residuals for teleseismic events observed at the Montana Large Aperture Seismic Array (LASA), we have determined the three-dimensional seismic structure of the lithosphere under the array to a depth of 140 km. The root-mean-square velocity fluctuation was found to be at least 3.2 per cent which may be compared to estimate of ca. 2 per cent based on the Chernov random medium theory. The solutions are given by both the generalized inverse and stochastic inverse methods in order to demonstrate the relative merit of different inversion techniques. The most conspicuous feature of the lithosphere under LASA is a low-velocity anomaly in the central and northeast part of the array siting area with the N60°E trend and persisting from the upper crust to depths greater than 100 km. We interpret this low-velocity anomaly as a zone of weakness caused by faulting and shearing associated with the building of the Rocky Mountains.


2000 ◽  
Author(s):  
David A. Scott ◽  
P. H. Oosthuizen

Abstract Heat transfer from relatively short vertical isothermal cylinders in a horizontal forced fluid flow has been considered. The flow conditions are such that the buoyancy forces resulting from the temperature differences in the flow are in general significant despite of the presence of a horizontal forced flow of air, that is, mixed convective flow exists. Because the cylinders are short and the buoyancy forces act normal to the forced flow, three-dimensional flow exists. The experiments were performed in a low velocity, open jet wind tunnel. The study involved the experimental determination of the mean heat transfer coefficient and a comparison of the results with a previous numerical analysis. Mean heat transfer rates were determined using the ‘lumped capacity’ method. The mean Nusselt number has the Reynolds number, Grashof number and the height to diameter ratio of the cylinders as parameters. The results have been used to determine the conditions under which the flow departs from purely forced convection and enters the mixed convection regime, i.e., determining the conditions for which the buoyancy effects should be included in convective heat transfer calculations for short cylinders.


2014 ◽  
Vol 501-504 ◽  
pp. 1447-1452
Author(s):  
Yan Yan Yu ◽  
Qi Fang Liu

Seismic response of the Shidian basin to moderate scenario earthquake is investigated considering 3D basin model incorporated with real topography by using the spectral-element method and parallel computing technique. The wave propagation process, the generation of surface wave, and the impact of soil deposits velocity to the basin-induced surface wave are studied in this paper. The results show that the amplification behavior of the basin is the interactions of basin geometry and low velocity soil deposits. First, locally small hollows in the basin are apt to trap seismic waves and produce much stronger ground motion, basin edge and areas with deep sediments are also characterized with large amplification. Then, basin with softer soil deposits produces stronger surface waves with lower propagation velocity and higher mode.


1997 ◽  
Vol 40 (1) ◽  
Author(s):  
G. Drakatos ◽  
G. Karantonis ◽  
G. N. Stavrakakis

The three-dimensional velocity structure of the crust in the Aegean sea and the surrounding regions (34.0º-42.OºN, 19.0ºE-29.0ºE) is investigated by inversion of about 10000 residuals of arrival times of P-wave from local events. The resulting velocity structure shows strong horizontal variations due to the complicated crustal structure and the variations of crustal thickness. The northern part of the region generally shows high velocities. In the inner part of the volcanic arc (Southern Aegean area), relatively low velocities are observed, suggesting a large-scale absorption of seismic energy as confirmed by the low seismicity of the region. A low velocity zone was observed along the subduction zone of the region, up to a depth of 4 km. The existence of such a zone could be due to granitic or other intrusions in the crust during the uplift of the region during Alpidic orogenesis.


1979 ◽  
Vol 69 (2) ◽  
pp. 369-378
Author(s):  
George A. McMechan

abstract Plotting of three-dimensional ray surfaces in p-Δ-z space provides a means of determining p-Δ curves for any focal depth. A region of increasing velocity with depth is represented in p-Δ-z space by a trough, and a region of decreasing velocity, by a crest. Two sets of ray trajectories, the arrivals refracted outside a low-velocity zone, and the guided waves inside the zone, can be merged into a single set along the ray that splits into two at the top of the low-velocity zone. This ray is common to both sets. This construction provides continuity of the locus of ray turning points through the low-velocity zone and thus allows definition of p-Δ curves inside as well as outside the low-velocity zone.


2020 ◽  
Vol 497 (2) ◽  
pp. 1475-1487
Author(s):  
G Subebekova ◽  
S Zharikov ◽  
G Tovmassian ◽  
V Neustroev ◽  
M Wolf ◽  
...  

ABSTRACT We obtained photometric observations of the nova-like (NL) cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in NL systems is related to the bi-conical wind from the accretion disc’s inner part. However, we found that the Hα emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader component’s source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period NL systems – a point we discuss.


Sign in / Sign up

Export Citation Format

Share Document