Simulation of diurnal patterns of summer precipitation in the North American monsoon: An assessment using TRMM

2004 ◽  
Vol 31 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
Cheng-Zhi Zou ◽  
Weizhong Zheng
2018 ◽  
Vol 19 (2) ◽  
pp. 477-481 ◽  
Author(s):  
Theodore J. Bohn ◽  
Enrique R. Vivoni

Abstract For their investigation of the impact of irrigated agriculture on hydrometeorological fields in the North American monsoon (NAM) region, Mahalov et al. used the Weather Research and Forecasting (WRF) Model to simulate weather over the NAM region in the summer periods of 2000 and 2012, with and without irrigation applied to the regional croplands. Unfortunately, while the authors found that irrigated agriculture may indeed influence summer precipitation, the magnitude, location, and seasonality of their irrigation inputs were substantially inaccurate because of 1) the assumption that pixels classified as “irrigated cropland” are irrigated during the summer and 2) an outdated land cover map that misrepresents known agricultural districts. The combined effects of these errors are 1) an overestimation of irrigated croplands by a factor of 3–10 along the coast of the Gulf of California and by a factor of 1.5 near the Colorado River delta and 2) a large underestimation of irrigation by a factor of 7–10 in Chihuahua, particularly in 2012. Given the sensitivity of the WRF simulations conducted by Mahalov et al. to the presence of irrigated agriculture, it is expected that the identified errors would significantly impact surface moisture and energy fluxes, resulting in noticeably different effects on precipitation. The authors suggest that the analysis of irrigation effects on precipitation using coupled land–atmospheric modeling systems requires careful specification of the spatiotemporal distribution of irrigated croplands.


Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

2015 ◽  
Vol 15 (12) ◽  
pp. 6943-6958 ◽  
Author(s):  
E. Crosbie ◽  
J.-S. Youn ◽  
B. Balch ◽  
A. Wonaschütz ◽  
T. Shingler ◽  
...  

Abstract. A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012–2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm−3), highest in winter (430 cm−3) and have a secondary peak during the North American monsoon season (July to September; 372 cm−3). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm−3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82 % of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41 % (pre-monsoon) and 36 % (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could be possible in other locations with comparable climates and geography.


2008 ◽  
Vol 35 (22) ◽  
Author(s):  
Enrique R. Vivoni ◽  
Hernan A. Moreno ◽  
Giuseppe Mascaro ◽  
Julio C. Rodriguez ◽  
Christopher J. Watts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document