scholarly journals Comments on “Regional Impacts of Irrigation in Mexico and the Southwestern United States on Hydrometeorological Fields in the North American Monsoon Region”

2018 ◽  
Vol 19 (2) ◽  
pp. 477-481 ◽  
Author(s):  
Theodore J. Bohn ◽  
Enrique R. Vivoni

Abstract For their investigation of the impact of irrigated agriculture on hydrometeorological fields in the North American monsoon (NAM) region, Mahalov et al. used the Weather Research and Forecasting (WRF) Model to simulate weather over the NAM region in the summer periods of 2000 and 2012, with and without irrigation applied to the regional croplands. Unfortunately, while the authors found that irrigated agriculture may indeed influence summer precipitation, the magnitude, location, and seasonality of their irrigation inputs were substantially inaccurate because of 1) the assumption that pixels classified as “irrigated cropland” are irrigated during the summer and 2) an outdated land cover map that misrepresents known agricultural districts. The combined effects of these errors are 1) an overestimation of irrigated croplands by a factor of 3–10 along the coast of the Gulf of California and by a factor of 1.5 near the Colorado River delta and 2) a large underestimation of irrigation by a factor of 7–10 in Chihuahua, particularly in 2012. Given the sensitivity of the WRF simulations conducted by Mahalov et al. to the presence of irrigated agriculture, it is expected that the identified errors would significantly impact surface moisture and energy fluxes, resulting in noticeably different effects on precipitation. The authors suggest that the analysis of irrigation effects on precipitation using coupled land–atmospheric modeling systems requires careful specification of the spatiotemporal distribution of irrigated croplands.

2016 ◽  
Vol 17 (7) ◽  
pp. 1915-1927 ◽  
Author(s):  
Francina Dominguez ◽  
Gonzalo Miguez-Macho ◽  
Huancui Hu

Abstract The regional atmospheric Weather Research and Forecasting (WRF) Model with water vapor tracer diagnostics (WRF-WVT) is used to quantify the water vapor from different oceanic and terrestrial regions that contribute to precipitation during the North American monsoon (NAM) season. The 10-yr (2004–13) June–October simulations with 20-km horizontal resolution were driven by North American Regional Reanalysis data. Results show that lower-level moisture comes predominantly from the Gulf of California and is the most important source of precipitation. Upper-level (above 800 mb) southeasterly moisture originates from the Gulf of Mexico and Sierra Madre Occidental to the east. Moisture from within the NAM region (local recycling) is the second-most important precipitation source, as the local atmospheric moisture is very efficiently converted into precipitation. However, WRF-WVT overestimates precipitation and evapotranspiration in the NAM region, particularly over the mountainous terrain. Direct comparisons with moisture source analysis using the extended dynamic recycling model (DRM) reveal that the simple model fails to correctly backtrack moisture in this region of strong vertical wind shear. Furthermore, the assumption of a well-mixed atmosphere causes the simple model to significantly underestimate local recycling. However, the direct comparison with WRF-WVT can be used to guide future DRM improvements.


2012 ◽  
Vol 25 (11) ◽  
pp. 3953-3969 ◽  
Author(s):  
Cuauhtémoc Turrent ◽  
Tereza Cavazos

In this study the results of two regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulations forced at their boundaries with low-pass-filtered North American Regional Reanalysis (NARR) composite fields from which synoptic-scale variability was removed are presented. The filtered NARR data are also assimilated into the inner domain through the use of field nudging. The purpose of this research is to investigate wet and dry onset modes in the core region of the North American monsoon (NAM). Key features of the NAM that are present in the NARR fields and assimilated into the regional simulations include the position of the midlevel anticyclone, low-level circulation over the Gulf of California, and moisture flux patterns into the core monsoon region, for which the eastern Pacific is the likely primary source of moisture. The model develops a robust diurnal cycle of deep convection over the peaks of the Sierra Madre Occidental (SMO) that results solely from its radiation scheme and internal dynamics, in spite of the field nudging. The wet onset mode is related to a regional land–sea thermal contrast (LSTC) that is ~2°C higher than in the dry mode, and is further characterized by a northward-displaced midlevel anticyclone, a stronger surface pressure gradient along the Gulf of California, larger mean moisture fluxes into the core region from the eastern Pacific, a stronger diurnal cycle of deep convection, and the more northward distribution of precipitation along the axis of the SMO. A proposed regional LSTC mechanism for NAM onset interannual variability is consistent with the differences between both onset modes.


2016 ◽  
Vol 97 (11) ◽  
pp. 2103-2115 ◽  
Author(s):  
Yolande L. Serra ◽  
David K. Adams ◽  
Carlos Minjarez-Sosa ◽  
James M. Moker ◽  
Avelino F. Arellano ◽  
...  

Abstract Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.


2007 ◽  
Vol 20 (9) ◽  
pp. 1628-1648 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Brian D. McNoldy ◽  
Peter J. Rogers ◽  
Richard K. Taft

Abstract The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.


2007 ◽  
Vol 20 (7) ◽  
pp. 1219-1238 ◽  
Author(s):  
Jennifer L. Adams ◽  
David J. Stensrud

Abstract The North American monsoon (NAM) is a prominent summertime feature over northwestern Mexico and the southwestern United States. It is characterized by a distinct shift in midlevel winds from westerly to easterly as well as a sharp, marked increase in rainfall. This maximum in rainfall accounts for 60%–80% of the annual precipitation in northwestern Mexico and nearly 40% of the yearly rainfall over the southwestern United States. Gulf surges, or coastally trapped disturbances that occur over the Gulf of California, are important mechanisms in supplying the necessary moisture for the monsoon and are hypothesized in previous studies to be initiated by the passage of a tropical easterly wave (TEW). Since the actual number of TEWs varies from year to year, it is possible that TEWs are responsible for producing some of the interannual variability in the moisture flux and rainfall seen in the NAM. To explore the impact of TEWs on the NAM, four 1-month periods are chosen for study that represent a reasonable variability in TEW activity. Two continuous month-long simulations are produced for each of the selected months using the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model. One simulation is a control run that uses the complete boundary condition data, whereas a harmonic analysis is used to remove TEWs with periods of approximately 3.5 to 7.5 days from the model boundary conditions in the second simulation. These simulations with and without TEWs in the boundary conditions are compared to determine the impact of the waves on the NAM. Fields such as meridional moisture flux, rainfall totals, and surge occurrences are examined to define similarities and differences between the model runs. Results suggest that the removal of TEWs not only reduces the strength of gulf surges, but also rearranges rainfall over the monsoon region. Results further suggest that TEWs influence rainfall over the Southern Plains of the United States, with TEWs leading to less rainfall in this region. While these results are only suggestive, since rainfall is the most difficult model forecast parameter, it may be that TEWs alone can explain part of the inverse relationship between NAM and Southern Plains rainfall.


2007 ◽  
Vol 135 (9) ◽  
pp. 3098-3117 ◽  
Author(s):  
Peter J. Rogers ◽  
Richard H. Johnson

Abstract Gulf surges are disturbances that move northward along the Gulf of California (GOC), frequently advecting cool, moist air from the GOC or eastern tropical Pacific Ocean into the deserts of the southwest United States and northwest Mexico during the North American Monsoon (NAM). Little attention has been given to the dynamics of these disturbances because of the lack of reliable high-resolution data across the NAM region. High temporal and spatial observations collected during the 2004 North American Monsoon Experiment are used to investigate the structure and dynamical mechanisms of a significant gulf surge on 13–14 July 2004. Integrated Sounding Systems deployed along the east coast of the GOC and an enhanced network of rawinsonde sites across the NAM region are used in this study. Observations show that the 13–14 July gulf surge occurred in two primary stages. The first stage was preceded by anomalous low-level warming along the northern GOC on 13 July. Sharp cooling, moistening, and increased low-level south-southeasterly flow followed over a 12–18-h period. Over the northern gulf, the wind reached ∼20 m s−1 at 750 m AGL. Then there was a brief respite followed by the second stage—a similar, but deeper acceleration of the southerly flow associated with the passage of Tropical Storm (TS) Blas on 14 July. The initial surge disturbance traversed the GOC at a speed of ∼17–25 m s−1 and resulted in a deepening of the mixed layer along the northern gulf. Dramatic surface pressure rises also accompanied the surge. The weight of the evidence suggests that the first stage of the overall surge itself consisted of two parts. The initial part resembled borelike disturbances initiated by convective downdrafts impinging on the low-level stable layer over the region. The secondary part was characteristic of a Kelvin wave–type disturbance, as evident in the deeper layer of sharp cooling and strong wind that ensued. Another possible explanation for the first part is that the leading edge of this Kelvin wave steepened nonlinearly into a borelike disturbance. The second stage of the surge was associated with the increased circulation around TS Blas.


2016 ◽  
Vol 29 (21) ◽  
pp. 7911-7936 ◽  
Author(s):  
Salvatore Pascale ◽  
Simona Bordoni ◽  
Sarah B. Kapnick ◽  
Gabriel A. Vecchi ◽  
Liwei Jia ◽  
...  

Abstract The impact of atmosphere and ocean horizontal resolution on the climatology of North American monsoon Gulf of California (GoC) moisture surges is examined in a suite of global circulation models (CM2.1, FLOR, CM2.5, CM2.6, and HiFLOR) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These models feature essentially the same physical parameterizations but differ in horizontal resolution in either the atmosphere (≃200, 50, and 25 km) or the ocean (≃1°, 0.25°, and 0.1°). Increasing horizontal atmospheric resolution from 200 to 50 km results in a drastic improvement in the model’s capability of accurately simulating surge events. The climatological near-surface flow and moisture and precipitation anomalies associated with GoC surges are overall satisfactorily simulated in all higher-resolution models. The number of surge events agrees well with reanalyses, but models tend to underestimate July–August surge-related precipitation and overestimate September surge-related rainfall in the southwestern United States. Large-scale controls supporting the development of GoC surges, such as tropical easterly waves (TEWs), tropical cyclones (TCs), and trans-Pacific Rossby wave trains (RWTs), are also well captured, although models tend to underestimate the TEW and TC magnitude and number. Near-surface GoC surge features and their large-scale forcings (TEWs, TCs, and RWTs) do not appear to be substantially affected by a finer representation of the GoC at higher ocean resolution. However, the substantial reduction of the eastern Pacific warm sea surface temperature bias through flux adjustment in the Forecast-Oriented Low Ocean Resolution (FLOR) model leads to an overall improvement of tropical–extratropical controls on GoC moisture surges and the seasonal cycle of precipitation in the southwestern United States.


Sign in / Sign up

Export Citation Format

Share Document