scholarly journals Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes

2005 ◽  
Vol 32 (1) ◽  
Author(s):  
S. Parolai
Author(s):  
Shichuan Yuan ◽  
Zhenguo Zhang ◽  
Hengxin Ren ◽  
Wei Zhang ◽  
Xianhai Song ◽  
...  

ABSTRACT In this study, the characteristics of Love waves in viscoelastic vertical transversely isotropic layered media are investigated by finite-difference numerical modeling. The accuracy of the modeling scheme is tested against the theoretical seismograms of isotropic-elastic and isotropic-viscoelastic media. The correctness of the modeling results is verified by the theoretical phase-velocity dispersion curves of Love waves in isotropic or anisotropic elastic or viscoelastic media. In two-layer half-space models, the effects of velocity anisotropy, viscoelasticity, and attenuation anisotropy of media on Love waves are studied in detail by comparing the modeling results obtained for anisotropic-elastic, isotropic-viscoelastic, and anisotropic-viscoelastic media with those obtained for isotropic-elastic media. Then, Love waves in three typical four-layer half-space models are simulated to further analyze the characteristics of Love waves in anisotropic-viscoelastic layered media. The results show that Love waves propagating in anisotropic-viscoelastic media are affected by both the anisotropy and viscoelasticity of media. The velocity anisotropy of media causes substantial changes in the values and distribution range of phase velocities of Love waves. The viscoelasticity of media leads to the amplitude attenuation and phase velocity dispersion of Love waves, and these effects increase with decreasing quality factors. The attenuation anisotropy of media indicates that the viscoelasticity degree of media is direction dependent. Comparisons of phase velocity ratios suggest that the change degree of Love-wave phase velocities due to viscoelasticity is much less than that caused by velocity anisotropy.


2018 ◽  
Vol 184 ◽  
pp. 1156-1164 ◽  
Author(s):  
L. Draudviliene ◽  
H. Ait Aider ◽  
O. Tumsys ◽  
L. Mazeika

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. B243-B257 ◽  
Author(s):  
Majed Almalki ◽  
Brett Harris ◽  
J. Christian Dupuis

A set of field experiments using multiple transmitter center frequencies was completed to test the application potential of low-frequency full-waveform sonic logging in large-diameter production wells. Wireline logs were acquired in a simple open drillhole and a high-yield large diameter production well completed with wire-wound sand screens at an aquifer storage and recovery site in Perth, Western Australia. Phase-shift transform methods were applied to obtain phase-velocity dispersion images for frequencies of up to 4 kHz. A 3D representation of phase-velocity dispersion was developed to assist in the analysis of possible connections between low-frequency wave propagation modes and the distribution of hydraulic properties. For sandstone intervals in the test well, the highest hydraulic conductivity intervals were typically correlated with the lowest phase velocities. The main characteristics of dispersion images obtained from the sand-screened well were highly comparable with those obtained at the same depth level in a nearby simple drillhole open to the formation. The sand-screened well and the open-hole displayed an expected and substantial difference between dispersion in sand- and clay-dominated intervals. It appears that for clay-dominated formations, the rate of change of phase velocity can be associated to clay content. We demonstrated that with appropriate acquisition and processing, multifrequency full-waveform sonic logging applied in existing large-diameter sand-screened wells can produce valuable results. There are few wireline logging technologies that can be applied in this setting. The techniques that we used would be highly suitable for time-lapse applications in high-volume production wells or for reassessing formation properties behind existing historical production wells.


Sign in / Sign up

Export Citation Format

Share Document