scholarly journals Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean

2004 ◽  
Vol 109 (C12) ◽  
Author(s):  
S. Brachet
2014 ◽  
Vol 31 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Federico Ienna ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean eddies (meddies), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of ensemble empirical mode decomposition (EEMD) as a means to isolate the surface expressions of meddies on the ocean surface and separates them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6-month time period (2 November 2005 to 17 May 2006). Results of the satellite tracking method are verified using expendable bathythermographs (XBT).


Ocean Science ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 425-438 ◽  
Author(s):  
G. Candille ◽  
J.-M. Brankart ◽  
P. Brasseur

Abstract. A realistic circulation model of the North Atlantic ocean at 0.25° resolution (NATL025 NEMO configuration) has been adapted to explicitly simulate model uncertainties. This is achieved by introducing stochastic perturbations in the equation of state to represent the effect of unresolved scales on the model dynamics. The main motivation for this work is to develop ensemble data assimilation methods, assimilating altimetric data from past missions Jason-1 and Envisat. The assimilation experiment is designed to provide a description of the uncertainty associated with the Gulf Stream circulation for years 2005/2006, focusing on frontal regions which are predominantly affected by unresolved dynamical scales. An ensemble based on such stochastic perturbations is first produced and evaluated using along-track altimetry observations. Then each ensemble member is updated by a square root algorithm based on the SEEK (singular evolutive extended Kalman) filter (Brasseur and Verron, 2006). These three elements – stochastic parameterization, ensemble simulation and 4-D observation operator – are then used together to perform a 4-D analysis of along-track altimetry over 10-day windows. Finally, the results of this experiment are objectively evaluated using the standard probabilistic approach developed for meteorological applications (Toth et al., 2003; Candille et al., 2007). The results show that the free ensemble – before starting the assimilation process – correctly reproduces the statistical variability over the Gulf Stream area: the system is then pretty reliable but not informative (null probabilistic resolution). Updating the free ensemble with altimetric data leads to a better reliability with an information gain of around 30% (for 10-day forecasts of the SSH variable). Diagnoses on fully independent data (i.e. data that are not assimilated, like temperature and salinity profiles) provide more contrasted results when the free and updated ensembles are compared.


2019 ◽  
Vol 49 (5) ◽  
pp. 1159-1181 ◽  
Author(s):  
Christopher Danek ◽  
Patrick Scholz ◽  
Gerrit Lohmann

AbstractThe influence of a high horizontal resolution (5–15 km) on the general circulation and hydrography in the North Atlantic is investigated using the Finite Element Sea Ice–Ocean Model (FESOM). We find a stronger shift of the upper-ocean circulation and water mass properties during the model spinup in the high-resolution model version compared to the low-resolution (~1°) control run. In quasi equilibrium, the high-resolution model is able to reduce typical low-resolution model biases. Especially, it exhibits a weaker salinification of the North Atlantic subpolar gyre and a reduced mixed layer depth in the Labrador Sea. However, during the spinup adjustment, we see that initially improved high-resolution features partially reduce over time: the strength of the Atlantic overturning and the path of the North Atlantic Current are not maintained, and hence hydrographic biases known from low-resolution ocean models return in the high-resolution quasi-equilibrium state. We identify long baroclinic Rossby waves as a potential cause for the strong upper-ocean adjustment of the high-resolution model and conclude that a high horizontal resolution improves the state of the modeled ocean but the model integration length should be chosen carefully.


2017 ◽  
Vol 122 (4) ◽  
pp. 2686-2708 ◽  
Author(s):  
Tilia Breckenfelder ◽  
Monika Rhein ◽  
Achim Roessler ◽  
Claus W. Böning ◽  
Arne Biastoch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document