Time series analysis of regional climate model performance

Author(s):  
Jason P. Evans
2014 ◽  
Vol 44 (5-6) ◽  
pp. 1699-1713 ◽  
Author(s):  
Karina Williams ◽  
Jill Chamberlain ◽  
Carlo Buontempo ◽  
Caroline Bain

1969 ◽  
Vol 35 ◽  
pp. 75-78 ◽  
Author(s):  
Charalampos Charalampidis ◽  
Dirk Van As ◽  
Peter L. Langen ◽  
Robert S. Fausto ◽  
Baptiste Vandecrux ◽  
...  

Recent record-warm summers in Greenland (Khan et al. 2015) have started affecting the higher regions of the ice sheet (i.e. the accumulation area), where increased melt has altered the properties of firn (i.e. multi-year snow). At high altitudes, meltwater percolates in the porous snow and firn, where it refreezes. The result is mass conservation, as the refrozen meltwater is essentially stored (Harper et al. 2012). However, in some regions increased meltwater refreezing in shallow firn has created thick ice layers. These ice layers act as a lid, and can inhibit meltwater percolation to greater depths, causing it to run off instead (Machguth et al. 2016). Meltwater at the surface also results in more absorbed sunlight, and hence increased melt in the accumulation area (Charalampidis et al. 2015). These relatively poorly understood processes are important for ice-sheet mass-budget projections.


2011 ◽  
Vol 12 (1) ◽  
pp. 84-100 ◽  
Author(s):  
Csaba Torma ◽  
Erika Coppola ◽  
Filippo Giorgi ◽  
Judit Bartholy ◽  
Rita Pongrácz

Abstract This paper presents a validation study for a high-resolution version of the Regional Climate Model version 3 (RegCM3) over the Carpathian basin and its surroundings. The horizontal grid spacing of the model is 10 km—the highest reached by RegCM3. The ability of the model to capture temporal and spatial variability of temperature and precipitation over the region of interest is evaluated using metrics spanning a wide range of temporal (daily to climatology) and spatial (inner domain average to local) scales against different observational datasets. The simulated period is 1961–90. RegCM3 shows small temperature biases but a general overestimation of precipitation, especially in winter; although, this overestimate may be artificially enhanced by uncertainties in observations. The precipitation bias over the Hungarian territory, the authors’ main area of interest, is mostly less than 20%. The model captures well the observed late twentieth-century decadal-to-interannual and interseasonal variability. On short time scales, simulated daily temperature and precipitation show a high correlation with observations, with a correlation coefficient of 0.9 for temperature and 0.6 for precipitation. Comparison with two Hungarian station time series shows that the model performance does not degrade when going to the 10-km gridpoint scale. Finally, the model reproduces the spatial distribution of dry and wet spells over the region. Overall, it is assessed that this high-resolution version of RegCM3 is of sufficiently good quality to perform climate change experiments over the Carpathian region—and, in particular, the Hungarian territory—for application to impact and adaptation studies.


2012 ◽  
Vol 16 (12) ◽  
pp. 4517-4530 ◽  
Author(s):  
S. C. van Pelt ◽  
J. J. Beersma ◽  
T. A. Buishand ◽  
B. J. J. M. van den Hurk ◽  
P. Kabat

Abstract. Probability estimates of the future change of extreme precipitation events are usually based on a limited number of available global climate model (GCM) or regional climate model (RCM) simulations. Since floods are related to heavy precipitation events, this restricts the assessment of flood risks. In this study a relatively simple method has been developed to get a better description of the range of changes in extreme precipitation events. Five bias-corrected RCM simulations of the 1961–2100 climate for a single greenhouse gas emission scenario (A1B SRES) were available for the Rhine basin. To increase the size of this five-member RCM ensemble, 13 additional GCM simulations were analysed. The climate responses of the GCMs are used to modify an observed (1961–1995) precipitation time series with an advanced delta change approach. Changes in the temporal means and variability are taken into account. It is found that the range of future change of extreme precipitation across the five-member RCM ensemble is similar to results from the 13-member GCM ensemble. For the RCM ensemble, the time series modification procedure also results in a similar climate response compared to the signal deduced from the direct model simulations. The changes from the individual RCM simulations, however, systematically differ from those of the driving GCMs, especially for long return periods.


2015 ◽  
Vol 46 (3-4) ◽  
pp. 1065-1074 ◽  
Author(s):  
Aljoscha Rheinwalt ◽  
Niklas Boers ◽  
Norbert Marwan ◽  
Jürgen Kurths ◽  
Peter Hoffmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document