scholarly journals Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations

2012 ◽  
Vol 16 (12) ◽  
pp. 4517-4530 ◽  
Author(s):  
S. C. van Pelt ◽  
J. J. Beersma ◽  
T. A. Buishand ◽  
B. J. J. M. van den Hurk ◽  
P. Kabat

Abstract. Probability estimates of the future change of extreme precipitation events are usually based on a limited number of available global climate model (GCM) or regional climate model (RCM) simulations. Since floods are related to heavy precipitation events, this restricts the assessment of flood risks. In this study a relatively simple method has been developed to get a better description of the range of changes in extreme precipitation events. Five bias-corrected RCM simulations of the 1961–2100 climate for a single greenhouse gas emission scenario (A1B SRES) were available for the Rhine basin. To increase the size of this five-member RCM ensemble, 13 additional GCM simulations were analysed. The climate responses of the GCMs are used to modify an observed (1961–1995) precipitation time series with an advanced delta change approach. Changes in the temporal means and variability are taken into account. It is found that the range of future change of extreme precipitation across the five-member RCM ensemble is similar to results from the 13-member GCM ensemble. For the RCM ensemble, the time series modification procedure also results in a similar climate response compared to the signal deduced from the direct model simulations. The changes from the individual RCM simulations, however, systematically differ from those of the driving GCMs, especially for long return periods.

2012 ◽  
Vol 9 (5) ◽  
pp. 6533-6568 ◽  
Author(s):  
S. C. van Pelt ◽  
J. J. Beersma ◽  
T. A. Buishand ◽  
B. J. J. M. van den Hurk ◽  
P. Kabat

Abstract. Probability estimates of the future change of extreme precipitation events are usually based on a limited number of available Global Climate Model (GCM) or Regional Climate Model (RCM) simulations. Since floods are related to heavy precipitation events, this restricts the assessment of flood risks. In this study a relatively simple method has been developed to get a better picture of the range of changes in extreme precipitation events. Five bias corrected RCM simulations of the 1971–2100 climate for a single greenhouse gas emission scenario (A1B SRES) were available for the Rhine basin. To increase the size of this five-member RCM ensemble, 13 additional GCM simulations were analysed. The climate responses of the GCMs are used to modify an observed (1961–1995) precipitation/temperature time series with an advanced delta change approach. Changes in the temporal means and variability are taken into account. Time series resampling was applied to extend 35-yr GCM and RCM time-slices to 3000-yr series to estimate extreme precipitation with return periods up to 1000 yr. It is found that the range of future change of extreme precipitation across the five-member RCM ensemble is similar to results from the 13-member GCM ensemble. For the RCM ensemble, the time series modification procedure also resulted in a similar climate response compared to the signal deduced from the direct model simulations. The changes from the individual RCM simulations, however, systematically differ from those of the driving GCMs, especially for long return periods.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 9-15 ◽  
Author(s):  
M. Grum ◽  
A.T. Jørgensen ◽  
R.M. Johansen ◽  
J.J. Linde

That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps: Firstly, hourly rainfall intensities from 16 point rain gauges are averaged to create a rain gauge equivalent intensity for a 25 × 25 km square corresponding to one grid cell in the climate model. Secondly, the differences between present and future in the climate model is used to project the hourly extreme statistics of the rain gauge surface into the future. Thirdly, the future extremes of the square surface area are downscaled to give point rainfall extremes of the future. The results and conclusions rely heavily on the regional model's suitability in describing extremes at time-scales relevant to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change.


2018 ◽  
Vol 18 (7) ◽  
pp. 2047-2056 ◽  
Author(s):  
Stefan Brönnimann ◽  
Jan Rajczak ◽  
Erich M. Fischer ◽  
Christoph C. Raible ◽  
Marco Rohrer ◽  
...  

Abstract. The intensity of precipitation events is expected to increase in the future. The rate of increase depends on the strength or rarity of the events; very strong and rare events tend to follow the Clausius–Clapeyron relation, whereas weaker events or precipitation averages increase at a smaller rate than expected from the Clausius–Clapeyron relation. An often overlooked aspect is seasonal occurrence of such events, which might change in the future. To address the impact of seasonality, we use a large ensemble of regional and global climate model simulations, comprising tens of thousands of model years of daily temperature and precipitation for the past, present, and future. In order to make the data comparable, they are quantile mapped to observation-based time series representative of the Aare catchment in Switzerland. Model simulations show no increase in annual maximum 1-day precipitation events (Rx1day) over the last 400 years and an increase of 10 %–20 % until the end of the century for a strong (RCP8.5) forcing scenario. This fits with a Clausius–Clapeyron scaling of temperature at the event day, which increases less than annual mean temperature. An important reason for this is a shift in seasonality. Rx1day events become less frequent in late summer and more frequent in early summer and early autumn, when it is cooler. The seasonality shift is shown to be related to summer drying. Models with decreasing annual mean or summer mean precipitation show this behaviour more strongly. The highest Rx1day per decade, in contrast, shows no change in seasonality in the future. This discrepancy implies that decadal-scale extremes are thermodynamically limited; conditions conducive to strong events still occur during the hottest time of the year on a decadal scale. In contrast, Rx1day events are also limited by other factors. Conducive conditions are not reached every summer in the present, and even less so in the future. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events and assessing their socio-economic impacts.


2018 ◽  
Author(s):  
Stefan Brönnimann ◽  
Jan Rajczak ◽  
Erich Fischer ◽  
Christoph C. Raible ◽  
Marco Rohrer ◽  
...  

Abstract. The intensity of precipitation events is expected to increase in the future. The rate of increase depends on the strength or rarity of the events; very strong and rare events tend to follow the Clausius-Clapeyron relation, whereas weaker events or precipitation averages do not. An often overlooked aspect is seasonal occurrence of such events, which might change in the future. To address the impact of seasonality, we use a large ensemble of regional and global climate model simulations, comprising tens of thousands of model years of daily temperature and precipitation for the past, present and future. In order to make the data comparable, they are quantile-mapped to observation-based time series representative of the Aare catchment in Switzerland. Model simulations show no increase in annual maximum 1-day precipitation events (Rx1day) over the last 400 yrs and an increase of 10–20 % until the end of the century for a strong (RCP8.5) forcing scenario. This fits with a Clausius-Clapeyron scaling of temperature at the event day, which increases less than annual mean temperature. An important reason for this is a shift in seasonality. Rx1day events become less frequent in late summer and more frequent in early summer and early fall, when it is cooler. The seasonality shift is shown to be related to summer drying. Models with decreasing annual mean or summer mean precipitation show this behavior more strongly. The highest Rx1day per decade, in contrast, shows no change in seasonality in the future. This discrepancy implies that decadal-scale extremes are thermodynamically limited; conditions conducive to strong events still occur during hottest time of the year on a decadal scale. In contrast, Rx1day events are also limited by other factors. Conducive conditions are not reached every summer in the present, and even less so in the future. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events and assessing their socio-economic impacts.


2002 ◽  
Vol 3 (3) ◽  
pp. 322-334 ◽  
Author(s):  
Kenneth E. Kunkel ◽  
Karen Andsager ◽  
Xin-Zhong Liang ◽  
Raymond W. Arritt ◽  
Eugene S. Takle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document