Measurements of cloud droplet activation of aerosol particles at a clean subarctic background site

2005 ◽  
Vol 110 (D6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Mika Komppula ◽  
Heikki Lihavainen ◽  
Veli-Matti Kerminen ◽  
Markku Kulmala ◽  
Yrjö Viisanen
2018 ◽  
Author(s):  
Jian Wang ◽  
John E. Shilling ◽  
Jiumeng Liu ◽  
Alla Zelenyuk ◽  
David M. Bell ◽  
...  

Abstract. Aerosol particles strongly influence global climate by modifying the properties of clouds. An accurate assessment of the aerosol impact on climate requires knowledge of the concentration of cloud condensation nuclei (CCN), a subset of aerosol particles that can activate and form cloud droplets in the atmosphere. Atmospheric particles typically consist of a myriad of organic species, which frequently dominate the particle composition. As a result, CCN concentration is often a strong function of the hygroscopicity of organics in the particles. Earlier studies showed organic hygroscopicity increases nearly linearly with oxidation level. Such increase of hygroscopicity is conventionally attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for the majority of secondary organic aerosols (SOA), essentially all organics are dissolved at the point of droplet activation. Therefore, the organic hygroscopicity is not limited by solubility, but is dictated mainly by the molecular weight of organic species. Instead of increased water solubility as previously thought, the increase of the organic hygroscopicity with oxidation level is largely because (1) SOA formed from smaller precursor molecules tend to be more oxidized and have lower average molecular weight and (2) during oxidation, fragmentation reactions reduce average organic molecule weight, leading to increased hygroscopicity. A simple model of organic hygroscopicity based on molecular weight, oxidation level, and volatility is developed, and it successfully reproduces the variation of SOA hygroscopicity with oxidation level observed in the laboratory and field studies.


2014 ◽  
Vol 7 (4) ◽  
pp. 1535-1542 ◽  
Author(s):  
E. Simpson ◽  
P. Connolly ◽  
G. McFiggans

Abstract. Cloud droplet number concentration prediction is central to large-scale weather and climate modelling. The benchmark cloud parcel model calculation of aerosol particle growth and activation, by diffusion of vapour to aerosol particles in a rising parcel of air experiencing adiabatic expansion, is too computationally expensive for use in large-scale global models. Therefore the process of activation of aerosol particles into cloud droplets is parameterised with an aim to strike the optimum balance between numerical expense and accuracy. We present a detailed systematic evaluation of three cloud droplet activation parameterisations that are widely used in large-scale models and one recent update. In all cases, it is found that there is a tendency to overestimate the fraction of activated aerosol particles when the aerosol particle "median diameter" is large (between 250 and 2000 nm) in a single lognormal mode simulation. This is due to an infinite "effective simulation time" of the parameterisations compared to a prescribed simulation time in the parcel model. This problem arises in the parameterisations because it is assumed that a parcel of air rises to the altitude where maximum supersaturation occurs, regardless of whether this altitude is above the cloud top. Such behaviour is problematic because, in some cases, large aerosol can completely suppress the activation of drops. In some cases when the "median diameter" is small (between 5 and 250 nm) in a single lognormal mode the fraction of activated drops is underestimated by the parameterisations. Secondly, it is found that in dual-mode cases there is a systematic tendency towards underestimation of the fraction of activated drops, which is due to the methods used by the parameterisations to approximate the sink of water vapour.


2010 ◽  
Vol 114 (1) ◽  
pp. 379-386 ◽  
Author(s):  
Adam Kristensson ◽  
Thomas Rosenørn ◽  
Merete Bilde

2020 ◽  
Vol 117 (29) ◽  
pp. 16831-16838
Author(s):  
Prasanth Prabhakaran ◽  
Abu Sayeed Md Shawon ◽  
Gregory Kinney ◽  
Subin Thomas ◽  
Will Cantrell ◽  
...  

Aerosol indirect effects are one of the leading contributors to cloud radiative properties relevant to climate. Aerosol particles become cloud droplets when the ambient relative humidity (saturation ratio) exceeds a critical value, which depends on the particle size and chemical composition. In the traditional formulation of this problem, only average, uniform saturation ratios are considered. Using experiments and theory, we examine the effects of fluctuations, produced by turbulence. Our measurements, from a multiphase, turbulent cloud chamber, show a clear transition from a regime in which the mean saturation ratio dominates to one in which the fluctuations determine cloud properties. The laboratory measurements demonstrate cloud formation in mean-subsaturated conditions (i.e., relative humidity <100%) in the fluctuation-dominant activation regime. The theoretical framework developed to interpret these measurements predicts a transition from a mean- to a fluctuation-dominated regime, based on the relative values of the mean and standard deviation of the environmental saturation ratio and the critical saturation ratio at which aerosol particles activate or become droplets. The theory is similar to the concept of stochastic condensation and can be used in the context of the atmosphere to explore the conditions under which droplet activation is driven by fluctuations as opposed to mean supersaturation. It provides a basis for future development of cloud droplet activation parameterizations that go beyond the internally homogeneous parcel calculations that have been used in the past.


2014 ◽  
Vol 7 (1) ◽  
pp. 1317-1336
Author(s):  
E. Simpson ◽  
P. Connolly ◽  
G. McFiggans

Abstract. Cloud droplet number concentration prediction is central to large scale weather and climate modelling. The benchmark cloud parcel model calculation of aerosol particle growth and activation, by diffusion of vapour to aerosol particles in a rising parcel of air experiencing adiabatic expansion, is too computationally expensive for use in large scale global models. Therefore the process of activation of aerosol particles into cloud droplets is parameterised with an aim to strike the optimum balance between numerical expense and accuracy. We present the first systematic evaluation of three cloud droplet activation parameterisations that are widely used in large-scale models. In all cases, it is found that there is a tendency to overestimate the fraction activated aerosol particles when the aerosol particle "median diameter" is large in a single lognormal mode simulations. This is due to an infinite "effective simulation time" of the parameterisations compared to a prescribed simulation time in the parcel model. In some cases when the "median diameter" is small in a single lognormal mode the fraction of activated drops is underestimated by the parameterisations. Secondly it is found that in dual-mode cases there is a systematic tendency towards underestimation of the fraction of activated drops, which is due the methods used by the parameterisations to approximate the maximum supersaturation with respect to water vapour.


2012 ◽  
Vol 12 (7) ◽  
pp. 3253-3260 ◽  
Author(s):  
D. O. Topping ◽  
G. McFiggans

Abstract. The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936). However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.


2019 ◽  
Vol 19 (6) ◽  
pp. 3833-3855 ◽  
Author(s):  
Ghislain Motos ◽  
Julia Schmale ◽  
Joel C. Corbin ◽  
Rob. L. Modini ◽  
Nadine Karlen ◽  
...  

Abstract. Liquid clouds form by condensation of water vapour on aerosol particles in the atmosphere. Even black carbon (BC) particles, which are known to be slightly hygroscopic, have been shown to readily form cloud droplets once they have acquired water-soluble coatings by atmospheric aging processes. Accurately simulating the life cycle of BC in the atmosphere, which strongly depends on the wet removal following droplet activation, has recently been identified as a key element for accurate prediction of the climate forcing of BC. Here, to assess BC activation in detail, we performed in situ measurements during cloud events at the Jungfraujoch high-altitude station in Switzerland in summer 2010 and 2016. Cloud droplet residual and interstitial (unactivated) particles as well as the total aerosol were selectively sampled using different inlets, followed by their physical characterization using scanning mobility particle sizers (SMPSs), multi-angle absorption photometers (MAAPs) and a single-particle soot photometer (SP2). By calculating cloud droplet activated fractions with these measurements, we determined the roles of various parameters on the droplet activation of BC. The half-rise threshold diameter for droplet activation (Dhalfcloud), i.e. the size above which aerosol particles formed cloud droplets, was inferred from the aerosol size distributions measured behind the different inlets. The effective peak supersaturation (SSpeak) of a cloud was derived from Dhalfcloud by comparing it to the supersaturation dependence of the threshold diameter for cloud condensation nuclei (CCN) activation measured by a CCN counter (CCNC). In this way, we showed that the mass-based scavenged fraction of BC strongly correlates with that of the entire aerosol population because SSpeak modulates the critical size for activation of either particle type. A total of 50 % of the BC-containing particles with a BC mass equivalent core diameter of 90 nm was activated in clouds with SSpeak≈0.21 %, increasing up to ∼80 % activated fraction at SSpeak≈0.50 %. On a single-particle basis, BC activation at a certain SSpeak is controlled by the BC core size and internally mixed coating, which increases overall particle size and hygroscopicity. However, the resulting effect on the population averaged and on the size-integrated BC scavenged fraction by mass is small for two reasons: first, acquisition of coatings only matters for small cores in clouds with low SSpeak; and, second, variations in BC core size distribution and mean coating thickness are limited in the lower free troposphere in summer. Finally, we tested the ability of a simplified theoretical model, which combines the κ-Köhler theory with the Zdanovskii–Stokes–Robinson (ZSR) mixing rule under the assumptions of spherical core–shell particle geometry and surface tension of pure water, to predict the droplet activation behaviour of BC-containing particles in real clouds. Predictions of BC activation constrained with SSpeak and measured BC-containing particle size and mixing state were compared with direct cloud observations. These predictions achieved closure with the measurements for the particle size ranges accessible to our instrumentation, that is, BC core diameters and total particle diameters of approximately 50 and 180 nm, respectively. This clearly indicates that such simplified theoretical models provide a sufficient description of BC activation in clouds, as previously shown for activation occurring in fog at lower supersaturation and also shown in laboratory experiments under controlled conditions. This further justifies application of such simplified theoretical approaches in regional and global simulations of BC activation in clouds, which include aerosol modules that explicitly simulate BC-containing particle size and mixing state.


2018 ◽  
Author(s):  
Ghislain Motos ◽  
Julia Schmale ◽  
Joel C. Corbin ◽  
Robin Modini ◽  
Nadine Karlen ◽  
...  

Abstract. Liquid clouds form by condensation of water vapour on aerosol particles in the atmosphere. Even black carbon (BC) particles, which are known to be little hygroscopic, have been shown to readily form cloud droplets once they have acquired water-soluble coatings by atmospheric aging processes. Accurately simulating the life cycle of BC in the atmosphere, which strongly depends on the wet removal following droplet activation, has recently been identified as a key element for accurate prediction of the climate forcing of BC. Here, to assess BC activation in detail, we performed in-situ measurements during cloud events at the Jungfraujoch high mountain station in Switzerland in summer 2010 and 2016. Cloud droplet residual and interstitial (unactivated) particles as well as the total aerosol were selectively sampled using different inlets, followed by their physical characterization using scanning mobility particle sizers (SMPSs), multi-angle absorption photometers (MAAPs) and a single particle soot photometer (SP2). By calculating cloud droplet activated fractions with these measurements, we determined the roles of various parameters on the droplet activation of BC. The half-rise threshold diameter for droplet activation (Dhalfcloud), i.e. the size above which aerosol particles formed cloud droplets, was inferred from the aerosol size distributions measured behind the different inlets. The effective peak supersaturation (SSpeak) of a cloud was derived from Dhalfcloud by comparing it to the supersaturation dependence of the threshold diameter for cloud condensation nuclei (CCN) activation measured by a CCN counter (CCNC). In this way we showed that the mass-based scavenged fraction of BC strongly correlates with that of the entire aerosol population because SSpeak modulates the critical size for activation of either particle type. Fifty percent of the BC-containing particles with a BC mass equivalent core diameter of 90 nm were activated in clouds with SSpeak ≈ 0.21 %, increasing up to ~ 80 % activated fraction at SSpeak ≈ 0.5 %. On a single particle basis, BC activation at a certain SSpeak is controlled by the BC core size and internally mixed coating which increases overall particle size and hygroscopicity. However, the resulting effect on the population averaged and on the size integrated BC scavenged fraction by mass is small for two reasons: first, acquisition of coatings only matters for small cores in clouds with low SSpeak and, second, variations in BC core size distribution and mean coating thickness are limited in the lower free troposphere in summer.


2011 ◽  
Vol 11 (9) ◽  
pp. 25155-25171 ◽  
Author(s):  
D. Topping ◽  
G. McFiggans

Abstract. The substantial uncertainty in the indirect effect on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the longwave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived in 1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition and a particles size under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; moreso even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.


2019 ◽  
Vol 19 (2) ◽  
pp. 941-954 ◽  
Author(s):  
Jian Wang ◽  
John E. Shilling ◽  
Jiumeng Liu ◽  
Alla Zelenyuk ◽  
David M. Bell ◽  
...  

Abstract. Aerosol particles strongly influence global climate by modifying the properties of clouds. An accurate assessment of the aerosol impact on climate requires knowledge of the concentration of cloud condensation nuclei (CCN), a subset of aerosol particles that can activate and form cloud droplets in the atmosphere. Atmospheric particles typically consist of a myriad of organic species, which frequently dominate the particle composition. As a result, CCN concentration is often a strong function of the hygroscopicity of organics in the particles. Earlier studies showed organic hygroscopicity increases nearly linearly with oxidation level. Such an increase in hygroscopicity is conventionally attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for the majority of secondary organic aerosols (SOAs), essentially all organics are dissolved at the point of droplet activation. Therefore, for droplet activation, the organic hygroscopicity is not limited by solubility but is dictated mainly by the molecular weight of organic species. Instead of increased water solubility as previously thought, the increase in the organic hygroscopicity with oxidation level is largely because (1) SOAs formed from smaller precursor molecules tend to be more oxidized and have lower average molecular weight and (2) during oxidation, fragmentation reactions reduce average organic molecule weight, leading to increased hygroscopicity. A simple model of organic hygroscopicity based on molecular weight, oxidation level, and volatility is developed, and it successfully reproduces the variation in SOA hygroscopicity with oxidation level observed in the laboratory and field studies.


Sign in / Sign up

Export Citation Format

Share Document