scholarly journals Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility

2018 ◽  
Author(s):  
Jian Wang ◽  
John E. Shilling ◽  
Jiumeng Liu ◽  
Alla Zelenyuk ◽  
David M. Bell ◽  
...  

Abstract. Aerosol particles strongly influence global climate by modifying the properties of clouds. An accurate assessment of the aerosol impact on climate requires knowledge of the concentration of cloud condensation nuclei (CCN), a subset of aerosol particles that can activate and form cloud droplets in the atmosphere. Atmospheric particles typically consist of a myriad of organic species, which frequently dominate the particle composition. As a result, CCN concentration is often a strong function of the hygroscopicity of organics in the particles. Earlier studies showed organic hygroscopicity increases nearly linearly with oxidation level. Such increase of hygroscopicity is conventionally attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for the majority of secondary organic aerosols (SOA), essentially all organics are dissolved at the point of droplet activation. Therefore, the organic hygroscopicity is not limited by solubility, but is dictated mainly by the molecular weight of organic species. Instead of increased water solubility as previously thought, the increase of the organic hygroscopicity with oxidation level is largely because (1) SOA formed from smaller precursor molecules tend to be more oxidized and have lower average molecular weight and (2) during oxidation, fragmentation reactions reduce average organic molecule weight, leading to increased hygroscopicity. A simple model of organic hygroscopicity based on molecular weight, oxidation level, and volatility is developed, and it successfully reproduces the variation of SOA hygroscopicity with oxidation level observed in the laboratory and field studies.

2019 ◽  
Vol 19 (2) ◽  
pp. 941-954 ◽  
Author(s):  
Jian Wang ◽  
John E. Shilling ◽  
Jiumeng Liu ◽  
Alla Zelenyuk ◽  
David M. Bell ◽  
...  

Abstract. Aerosol particles strongly influence global climate by modifying the properties of clouds. An accurate assessment of the aerosol impact on climate requires knowledge of the concentration of cloud condensation nuclei (CCN), a subset of aerosol particles that can activate and form cloud droplets in the atmosphere. Atmospheric particles typically consist of a myriad of organic species, which frequently dominate the particle composition. As a result, CCN concentration is often a strong function of the hygroscopicity of organics in the particles. Earlier studies showed organic hygroscopicity increases nearly linearly with oxidation level. Such an increase in hygroscopicity is conventionally attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for the majority of secondary organic aerosols (SOAs), essentially all organics are dissolved at the point of droplet activation. Therefore, for droplet activation, the organic hygroscopicity is not limited by solubility but is dictated mainly by the molecular weight of organic species. Instead of increased water solubility as previously thought, the increase in the organic hygroscopicity with oxidation level is largely because (1) SOAs formed from smaller precursor molecules tend to be more oxidized and have lower average molecular weight and (2) during oxidation, fragmentation reactions reduce average organic molecule weight, leading to increased hygroscopicity. A simple model of organic hygroscopicity based on molecular weight, oxidation level, and volatility is developed, and it successfully reproduces the variation in SOA hygroscopicity with oxidation level observed in the laboratory and field studies.


2006 ◽  
Vol 6 (12) ◽  
pp. 4519-4527 ◽  
Author(s):  
H. Wex ◽  
A. Kiselev ◽  
M. Ziese ◽  
F. Stratmann

Abstract. A calibration for LACIS (Leipzig Aerosol Cloud Interaction Simulator) for its use as a CCN (cloud condensation nuclei) detector has been developed. For this purpose, sodium chloride and ammonium sulfate particles of known sizes were generated and their grown sizes were detected at the LACIS outlet. From these signals, the effective critical super-saturation was derived as a function of the LACIS wall temperature. With this, LACIS is calibrated for its use as a CCN detector. The applicability of LACIS for measurements of the droplet activation, and also of the hygroscopic growth of atmospheric aerosol particles was tested. The activation of the urban aerosol particles used in the measurements was found to occur at a critical super-saturation of 0.46% for particles with a dry diameter of 75 nm, and at 0.42% for 85 nm, respectively. Hygroscopic growth was measured for atmospheric aerosol particles with dry diameters of 150, 300 and 350 nm at relative humidities of 98 and 99%, and it was found that the larger dry particles contained a larger soluble volume fraction of about 0.85, compared to about 0.6 for the 150 nm particles.


2014 ◽  
Vol 7 (4) ◽  
pp. 1535-1542 ◽  
Author(s):  
E. Simpson ◽  
P. Connolly ◽  
G. McFiggans

Abstract. Cloud droplet number concentration prediction is central to large-scale weather and climate modelling. The benchmark cloud parcel model calculation of aerosol particle growth and activation, by diffusion of vapour to aerosol particles in a rising parcel of air experiencing adiabatic expansion, is too computationally expensive for use in large-scale global models. Therefore the process of activation of aerosol particles into cloud droplets is parameterised with an aim to strike the optimum balance between numerical expense and accuracy. We present a detailed systematic evaluation of three cloud droplet activation parameterisations that are widely used in large-scale models and one recent update. In all cases, it is found that there is a tendency to overestimate the fraction of activated aerosol particles when the aerosol particle "median diameter" is large (between 250 and 2000 nm) in a single lognormal mode simulation. This is due to an infinite "effective simulation time" of the parameterisations compared to a prescribed simulation time in the parcel model. This problem arises in the parameterisations because it is assumed that a parcel of air rises to the altitude where maximum supersaturation occurs, regardless of whether this altitude is above the cloud top. Such behaviour is problematic because, in some cases, large aerosol can completely suppress the activation of drops. In some cases when the "median diameter" is small (between 5 and 250 nm) in a single lognormal mode the fraction of activated drops is underestimated by the parameterisations. Secondly, it is found that in dual-mode cases there is a systematic tendency towards underestimation of the fraction of activated drops, which is due to the methods used by the parameterisations to approximate the sink of water vapour.


2019 ◽  
Author(s):  
Fan Mei ◽  
Jian Wang ◽  
Jennifer M. Comstock ◽  
Ralf Weigel ◽  
Martina Krämer ◽  
...  

Abstract. The indirect effect of atmospheric aerosol particles on the Earth’s radiation balance remains one of the most uncertain components affecting climate change throughout the industrial period. This issue is partially a result of the incomplete understanding of aerosol-cloud interactions. One objective of the GoAmazon2014/5 and ACRIDICON-CHUVA projects was to improve the understanding of the influence of the emissions of the tropical megacity of Manaus (Brazil) on the surrounding atmospheric environment of the rainforest and to investigate its role in the life cycle of convective clouds. During one of the intensive observation periods (IOPs) in the dry season from September 1 to October 10, 2014, comprehensive instrument suites collected data from several ground sites. In a coordinated way, the advanced suites of sophisticated instruments were deployed in situ both from the U.S. Department of Energy Gulfstream-1 (G1) aircraft and the German High Altitude and Long-Range Research Aircraft (HALO) during three coordinated flights on September 9, 21, and October 1. Here we report on the comparison of measurements collected by the two aircraft during these three flights. Such comparisons are difficult to obtain, but they are essential for assessing the data quality from the individual platforms and quantifying their uncertainty sources. Similar instruments mounted on the G1 and HALO collected vertical profile measurements of aerosol particles number concentration and size distribution, cloud condensation nuclei concentration, ozone, and carbon monoxide concentration, cloud droplet size distribution, and downward solar irradiance. We find that the above measurements from the two aircraft agreed within the range given by the measurement uncertainties. Aerosol chemical composition measured by instruments on HALO agreed with the corresponding G1 data collected at high altitudes only. Furthermore, possible causes of discrepancies between the data sets collected by the G1 and HALO instrumentation are addressed in this paper. Based on these results, criteria for meaningful aircraft measurement comparisons are discussed.


2021 ◽  
Author(s):  
Sihui Jiang ◽  
Fang Zhang ◽  
Jingye Ren ◽  
Lu Chen ◽  
Xing Yan ◽  
...  

Abstract. New particle formation (NPF) is a large source of cloud condensation nuclei (CCN) and cloud droplet in the troposphere. In this study, we quantified the contribution of NPF to cloud droplet number concentration (CDNC, or Nd) at typical updraft velocities (V) in clouds using a field campaign data of aerosol number size distribution and chemical composition observed on May 25–June 18, 2017 in urban Beijing. We show that the NPF drives the variations of CCN and cloud droplet and increases Nd by 30–33 % at V = 0.3–3 m s−1 in urban atmosphere. A markedly reduction in Nd is observed due to water vapor competition with consideration of actual environmental updraft velocity, decreasing by 11.8 ± 5.0 % at V = 3 m s−1 and 19.0 ± 4.5 % at V = 0.3 m s−1 compared to that from a prescribed supersaturation. The effect of water vapor competition becomes smaller at larger V that can provide more sufficient water vapor. Essentially, water vapor competition led to the reduction in Nd by decreasing the environmental maximum supersaturation (Smax) for the activation of aerosol particles. It is shown that Smax was decreased by 14.5–11.7 % for V = 0.3–3 m s−1. Particularly, the largest suppression of cloud droplet formation due to the water vapor competition is presented at extremely high aerosol particle number concentrations. As a result, although a larger increase of CCN-size particles by NPF event is derived on clean NPF day when pre-existing background aerosol particles are very low, there is no large discrepancy in the enhancement of Nd by NPF between the clean and polluted NPF day. We finally show a considerable impact of the primary sources when evaluating the NPF contribution to cloud droplet based on a case study. Our study highlights the importance of fully consideration of both the environmental meteorological conditions and multiple sources (i.e. secondary and primary) to evaluate the NPF effect on clouds and the associated climate effects in polluted regions.


2019 ◽  
Author(s):  
David Painemal ◽  
Fu-Lung Chang ◽  
Richard Ferrare ◽  
Sharon Burton ◽  
Zhujun Li ◽  
...  

Abstract. Satellite quantification of aerosol effects on clouds relies on aerosol optical depth (AOD) as a proxy for aerosol concentration or cloud condensation nuclei (CCN). However, the lack of error characterization of satellite-based results hampers their use for the evaluation and improvement of global climate models. We show that the use of AOD for assessing aerosol-cloud interactions (ACI) is inadequate over vast oceanic areas in the subtropics. Instead, we postulate that a more physical approach that consists of matching vertically resolved aerosol data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite at the cloud-layer height with Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) cloud retrievals reduces uncertainties in satellite-based ACI estimates. Combined aerosol extinction coefficients (σ) below cloud-top (σBC) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud droplet number concentrations (Nd) from Aqua-MODIS yield high correlations across a broad range of σBC values, with σBC quartile correlations > 0.78. In contrast, CALIOP-based AOD yields correlations with MODIS Nd of less than 0.62 for the two lower AOD quartiles. Moreover, σBC explains 41 % of the spatial variance in MODIS Nd, whereas AOD only explains 17 %, primarily caused by the lack of spatial covariability in the eastern Pacific. Compared with σBC, near-surface σ weakly correlates in space with MODIS Nd, accounting for a 16 % variance. It is concluded that the linear regression calculated from ln(Nd)−ln(σBC) (the standard method for quantifying ACI) is more physically meaningful than that derived from the Nd−AOD pair.


2006 ◽  
Vol 6 (9) ◽  
pp. 2465-2482 ◽  
Author(s):  
E. Dinar ◽  
I. Taraniuk ◽  
E. R. Graber ◽  
S. Katsman ◽  
T. Moise ◽  
...  

Abstract. Humic like substances (HULIS) have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh, aged and pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River Fulvic Acid), and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. The Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.


2010 ◽  
Vol 114 (1) ◽  
pp. 379-386 ◽  
Author(s):  
Adam Kristensson ◽  
Thomas Rosenørn ◽  
Merete Bilde

2020 ◽  
Vol 117 (29) ◽  
pp. 16831-16838
Author(s):  
Prasanth Prabhakaran ◽  
Abu Sayeed Md Shawon ◽  
Gregory Kinney ◽  
Subin Thomas ◽  
Will Cantrell ◽  
...  

Aerosol indirect effects are one of the leading contributors to cloud radiative properties relevant to climate. Aerosol particles become cloud droplets when the ambient relative humidity (saturation ratio) exceeds a critical value, which depends on the particle size and chemical composition. In the traditional formulation of this problem, only average, uniform saturation ratios are considered. Using experiments and theory, we examine the effects of fluctuations, produced by turbulence. Our measurements, from a multiphase, turbulent cloud chamber, show a clear transition from a regime in which the mean saturation ratio dominates to one in which the fluctuations determine cloud properties. The laboratory measurements demonstrate cloud formation in mean-subsaturated conditions (i.e., relative humidity <100%) in the fluctuation-dominant activation regime. The theoretical framework developed to interpret these measurements predicts a transition from a mean- to a fluctuation-dominated regime, based on the relative values of the mean and standard deviation of the environmental saturation ratio and the critical saturation ratio at which aerosol particles activate or become droplets. The theory is similar to the concept of stochastic condensation and can be used in the context of the atmosphere to explore the conditions under which droplet activation is driven by fluctuations as opposed to mean supersaturation. It provides a basis for future development of cloud droplet activation parameterizations that go beyond the internally homogeneous parcel calculations that have been used in the past.


Sign in / Sign up

Export Citation Format

Share Document