An analytical model to relate the vertical root distribution to climate and soil properties

2006 ◽  
Vol 33 (18) ◽  
pp. n/a-n/a ◽  
Author(s):  
Francesco Laio ◽  
Paolo D'Odorico ◽  
Luca Ridolfi
1990 ◽  
Vol 30 (5) ◽  
pp. 699 ◽  
Author(s):  
CM Menzel ◽  
RL Aitken ◽  
AW Dowling ◽  
DR Simpson

A core sampling technique was used to investigate the vertical root distribution of 8-10-year-old lychee trees (Litchi chinensis cv. Tai So) growing on 5 acid soils in subtropical Queensland (lat. 27�s.). At each site, soil and roots were sampled at 10 cm depth intervals to 100 cm, the root density determined and a range of soil chemical and physical properties measured. Eighty percent of the feeder roots were located within the top 0-20 cm (1 site), 0 4 0 cm (2 sites) or 0-60 cm (2 sites). The depth of rooting was greatest in the fine textured soils, while the greatest total root density was recorded in the coarse textured soils. The data suggest that the placement of tensiometers for water scheduling needs to take into account the effective rooting depth of lychee because it may vary with soil type. At all sites, pH values were acidic (pH<6.0) and subsoil pH values were below 5.5, and exchangeable Ca decreased and exchangeable A1 increased with depth. Four of the 5 sites had subsoil with >30% Al saturation of the cation exchange capacity. Although root density (all sites) was correlated with a number of soil chemical properties, stepwise multiple linear regression showed that 62% of the variation in root density could be explained by a curvilinear function of depth. The intercorrelations between soil properties and the correlation of depth with some properties demonstrate the difficulties in separating the effects of depth per se from those of soil properties in reducing root growth.


Crop Science ◽  
2007 ◽  
Vol 47 (4) ◽  
pp. 1498-1509 ◽  
Author(s):  
D. Brenton Myers ◽  
Newell R. Kitchen ◽  
Kenneth A. Sudduth ◽  
Robert E. Sharp ◽  
Randall J. Miles

1987 ◽  
Vol 65 (8) ◽  
pp. 1638-1642 ◽  
Author(s):  
L. A. C. J. Voesenek ◽  
C. W. P. M. Blom

Root development and architecture were studied in three Rumex species growing in a perforated soil system in the greenhouse. Distinct differences in vertical root distribution under drained conditions were found among the three species. Rumex acetosa and R. palustris had a relatively superficial root pattern, whereas in R. crispus much of the root growth was concentrated in lower soil layers. In the upper soil layer the relative growth rate of the roots of R. palustris was significantly larger than that of the other species. A relation between the characteristic rooting patterns under drained conditions and the Rumex zonation in the field is discussed.


Crop Science ◽  
2010 ◽  
Vol 50 (3) ◽  
pp. 803-807 ◽  
Author(s):  
Ismaïl Outoukarte ◽  
Majdouline Belaqziz ◽  
Adam Price ◽  
Nasrelhaq Nsarellah ◽  
Ismaïl El Hadrami

2004 ◽  
Vol 34 (9) ◽  
pp. 1883-1894 ◽  
Author(s):  
Ayalsew Zerihun ◽  
Kelvin D Montagu

We compared the belowground biomass (BGB)/aboveground biomass (AGB) ratio and the vertical root distribution of 40-year-old Pinus radiata D. Don fertilized with 0 or 90 kg P·ha–1 at planting. Root biomass was determined by a combination of coring (fine roots, ϕ < 2 mm; small roots, 2 ≤ ϕ < 15 mm) and excavation (coarse roots, ϕ ≥ 5 mm). Stand-level AGB and coarse root biomass (CRB) were estimated with the use of allometric relations. After 40 years, AGB and CRB of P-fertilized trees were 4.5 times those of unfertilized trees, indicating that CRB scaled isometrically with AGB independently of P supply. By contrast, P fertilization increased the fine and small root biomass (FSRB) pool by only 50%. As a result, the scaling of FSRB to AGB was dependent on P supply. The differential response of the FSRB to P fertilization caused the overall BGB/AGB ratio to decrease from 0.29 in control plots to 0.20 in P-fertilized plots. Phosphorus fertilization also altered the vertical distribution of fine root biomass (FRB). For example, the proportion of FRB in the top 15 cm increased from 41% to 52% with P fertilization. Collectively, the results showed that P added early in the growth phase had a persistent effect on the BGB/AGB ratio in P. radiata. This was primarily brought about by altered biomass partitioning to the nutrient-acquiring FSRB pool.


Plant Ecology ◽  
2006 ◽  
Vol 189 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Gui-Rui Yu ◽  
Jie Zhuang ◽  
Keiichi Nakayama ◽  
Yan Jin

2019 ◽  
Vol 94 (3) ◽  
pp. 917-932 ◽  
Author(s):  
R. Kaushal ◽  
Salil Tewari ◽  
R. L. Banik ◽  
S. D. Thapliyal ◽  
Indra Singh ◽  
...  

2003 ◽  
Vol 67 (6) ◽  
pp. 1869-1878 ◽  
Author(s):  
Ranjith P. Udawatta ◽  
Gray S. Henderson

Sign in / Sign up

Export Citation Format

Share Document