High-precision earthquake location and three-dimensionalPwave velocity determination at Redoubt Volcano, Alaska

Author(s):  
Heather R. DeShon ◽  
Clifford H. Thurber ◽  
Charlotte Rowe
2021 ◽  
Author(s):  
Anthony Lomax ◽  
Pierre Henry ◽  
Sophie Viseur

<p>We present a high-precision, absolute earthquake location procedure (NLL-SSST-coherence) based on waveform similarity between events and using the probabilistic, global-search NonLinLoc (NLL) location algorithm. NLL defines a posterior probability density function (PDF) in 3D space for absolute hypocenter location and invokes the equal differential-time (EDT) likelihood function which is very robust in the presence of outlier data. For NLL-SSST-coherence location we take initial NLL locations and iteratively generate smooth, 3D, source-specific, station travel-time corrections (SSST) for each station and phase type and an updated set of locations. Next, we greatly reduce absolute location, aleatoric error by combining location information across events based on waveform coherency between the events. This absolute coherency relocation is based on the concept that if the waveforms at a station for two or more events are very similar (have high coherency) up to a given frequency, then the distance separating these “multiplet” events is small relative to the seismic wavelength at that frequency. The NLL coherency relocation for a target event is a stack over 3D space of the event’s SSST location PDF and the SSST PDF’s for other similar events, each weighted by the waveform coherency between the target event and the other event. Absolute coherency relocation requires waveforms from only one or a few stations, allowing precise relocation for sparse networks, and for foreshocks and early aftershocks of a mainshock sequence or swarm before temporary stations are installed.</p><p>We apply the NLL-SSST-coherence procedure to the Mw5.8 Lone Pine CA, Mw5.7 Magna UT and Mw6.4 Monte Cristo NV earthquake sequences in 2020 and compare with other absolute and relative seismicity catalogs for these events. The NLL-SSST-coherence relocations generally show increased organization, clustering and depth resolution over other absolute location catalogs. The NLL-SSST-coherence relocations reflect well smaller scale patterns and features in relative location catalogs, with evidence of improved depth precision and accuracy over relative location results when there are no stations over or near the seismicity.</p><p>For all three western US sequences in 2020 the NLL-SSST-coherence relocations show mainly sparse clusters of seismicity. We interpret these clusters as damage zones around patches of principal mainshock slip containing few events, larger scale damage zone and splay structures around main slip patches, and background seismicity reactivated by stress changes from mainshock rupture. The Monte Cristo Range seismicity (Lomax 2020) shows two, en-echelon primary slip surfaces and surrounding, characteristic shear-crack features such as edge, wall, tip, and linking damage zones, showing that this sequence ruptured a complete shear crack system. See presentation EGU21-13447 for more details.</p><p>Lomax (2020) The 2020 Mw6.5 Monte Cristo NV earthquake: relocated seismicity shows rupture of a complete shear-crack system. Preprint: https://eartharxiv.org/repository/view/1904</p><p> </p>


2015 ◽  
Vol 203 (3) ◽  
pp. 1821-1831 ◽  
Author(s):  
Grazia De Landro ◽  
Ortensia Amoroso ◽  
Tony Alfredo Stabile ◽  
Emanuela Matrullo ◽  
Antony Lomax ◽  
...  

2017 ◽  
Author(s):  
Ricardo Alfencius Sagala ◽  
P. J. Prih Harjadi ◽  
Nova Heryandoko ◽  
Dimas Sianipar

2016 ◽  
Author(s):  
Andri Dian Nugraha ◽  
Hasbi Ash Shiddiqi ◽  
Sri Widiyantoro ◽  
Sutiyono ◽  
Titi Handayani

Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


Author(s):  
Klaus-Ruediger Peters

Differential hysteresis processing is a new image processing technology that provides a tool for the display of image data information at any level of differential contrast resolution. This includes the maximum contrast resolution of the acquisition system which may be 1,000-times higher than that of the visual system (16 bit versus 6 bit). All microscopes acquire high precision contrasts at a level of <0.01-25% of the acquisition range in 16-bit - 8-bit data, but these contrasts are mostly invisible or only partially visible even in conventionally enhanced images. The processing principle of the differential hysteresis tool is based on hysteresis properties of intensity variations within an image.Differential hysteresis image processing moves a cursor of selected intensity range (hysteresis range) along lines through the image data reading each successive pixel intensity. The midpoint of the cursor provides the output data. If the intensity value of the following pixel falls outside of the actual cursor endpoint values, then the cursor follows the data either with its top or with its bottom, but if the pixels' intensity value falls within the cursor range, then the cursor maintains its intensity value.


Sign in / Sign up

Export Citation Format

Share Document