scholarly journals Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues

2007 ◽  
Vol 112 (D10) ◽  
Author(s):  
Anthony J. Prenni ◽  
Paul J. DeMott ◽  
Cynthia Twohy ◽  
Michael R. Poellot ◽  
Sonia M. Kreidenweis ◽  
...  
2013 ◽  
Vol 71 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Gianni Santachiara ◽  
Franco Belosi ◽  
Franco Prodi

Abstract This paper addresses the problem of the large discrepancies between ice crystal concentrations in clouds and the number of ice nuclei in nearby clear air reported in published papers. Such discrepancies cannot always be explained, even by taking into account both primary and secondary ice formation processes. A laboratory experiment was performed in a cylindrical column placed in a cold room at atmospheric pressure and temperature in the −12° to −14°C range. Supercooled droplets were nucleated in the column, in the absence of aerosol ice nuclei, by injecting ice crystals generated outside in a small syringe. A rapid increase in the ice crystal concentration was observed in the absence of any known ice multiplication. The ratio between the mean number of ice crystals in the column, after complete droplet vaporization, and the number of ice crystals introduced in the column was about 10:1. The presence of small ice crystals (introduced at the top of the column) in the unstable system (supercooled droplets) appears to trigger the transformation in the whole supercooled liquid cloud. A possible explanation could be that the rapidly evaporating droplets cool sufficiently to determine a homogeneous nucleation.


2008 ◽  
Vol 8 (4) ◽  
pp. 15665-15698 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%.


2013 ◽  
Vol 13 (3) ◽  
pp. 7811-7869 ◽  
Author(s):  
L. A. Ladino ◽  
O. Stetzer ◽  
U. Lohmann

Abstract. This manuscript compiles both theoretical and experimental information on contact freezing with the aim to better understand this potentially important but still not well quantified heterogeneous freezing mode. There is no complete theory that describes contact freezing and how the energy barrier has to be overcome to nucleate an ice crystal by contact freezing. Experiments on contact freezing indicate that it can initiate ice formation at the highest temperatures. A difference in the freezing temperatures between contact and immersion freezing has been found using different instrumentation and different ice nuclei. There is a lack of data on collision rates in most of the reported data, which inhibits a quantitative calculation of the freezing efficiencies. Thus, new or modified instrumentation to study this heterogeneous freezing mode in the laboratory and in the field are needed. Important questions concerning contact freezing and its potential role for ice cloud formation and climate are also summarized.


2009 ◽  
Vol 9 (2) ◽  
pp. 369-381 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration.


2011 ◽  
Vol 11 (11) ◽  
pp. 30797-30851 ◽  
Author(s):  
I. Crawford ◽  
K. N. Bower ◽  
T. W. Choularton ◽  
C. Dearden ◽  
J. Crosier ◽  
...  

Abstract. In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~−8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~−7 °C). The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1) could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds. Aircraft penetrations at −3.5 °C, showed peak ice crystal concentrations of up to 100 L−1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns) suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM) secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm. Model simulations of the case study were also performed with the WRF (Weather, Research and Forecasting) model and ACPIM (Aerosol Cloud and Precipitation Interactions Model) to investigate the likely origins of the ice phase in these slightly supercooled clouds and to assess the role played by the HM process in this and in controlling precipitation formation under these conditions. WRF results showed that while HM does act to increase the mass and number concentration of ice particles produced in the model simulations, in the absence of HM, the ice number concentration arising from primary ice nucleation alone (several L−1) was apparently sufficient to sustain precipitation although the distribution of the precipitation was changed. Thus in the WRF model the HM process was shown to be non-critical for the formation of precipitation in this particular case. However, this result is seen to be subject to an important caveat concerning the simulation of the cloud macrostructure. The model was unable to capture a sharp temperature inversion seen in the radiosonde profiles at 2 km, and consequently the cloud top temperature in the model was able to reach lower values than observed in-situ or obtained from satellite data. ACPIM simulations confirmed the HM process to be a very powerful mechanism for producing the observed high ice concentrations, provided that primary nucleation occured to initiate the ice formation, and large droplets were present which then fell collecting the primary ice particles to form instant rimer particles. However, the time to generate the observed peak ice concentrations was found to be dependant on the number of primary IN present (decreasing with increasing IN number). This became realistic (around 20 min) only when the temperature input to the existing IN parameterisation was 6 °C lower than observed at cloud top, highlighting the requirement to improve basic knowledge of the number and type of IN active at these high temperatures. In simulations where cloud droplet numbers were realistic the precipitation rate was found to be unaffected by HM, with warm rain processes dominating precipitation development in this instance.


1969 ◽  
Vol 26 (6) ◽  
pp. 1342-1343 ◽  
Author(s):  
A. H. Auer ◽  
D. L. Veal ◽  
J. D. Marwitz
Keyword(s):  

2021 ◽  
Author(s):  
Bernd Kärcher ◽  
Claudia Marcolli

Abstract. The homogeneous nucleation of ice in supercooled liquid water clouds is characterized by time-dependent freezing rates. By contrast, water phase transitions induced heterogeneously by ice nucleating particles (INPs) are described by time-independent ice-active fractions depending on ice supersaturation (s). Laboratory studies report ice-active particle number fractions (AFs) that are cumulative in s. Cloud models budget INP and ice crystal numbers to conserve total particle number during water phase transitions. Here, we show that ice formation from INPs with time-independent nucleation behavior is overpredicted when models budget particle numbers and at the same time derive ice crystal numbers from s-cumulative AFs. This causes a bias towards heterogeneous ice formation in situations where INPs compete with homogeneous droplet freezing during cloud formation. We resolve this issue by introducing differential AFs, moving us one step closer to more robust simulations of aerosol-cloud interactions.


2011 ◽  
Vol 68 (7) ◽  
pp. 1424-1434 ◽  
Author(s):  
Xiping Zeng ◽  
Wei-Kuo Tao ◽  
Toshihisa Matsui ◽  
Shaocheng Xie ◽  
Stephen Lang ◽  
...  

Abstract The ice crystal enhancement (IE) factor, defined as the ratio of the ice crystal to ice nuclei (IN) number concentrations for any particular cloud condition, is needed to quantify the contribution of changes in IN to global warming. However, the ensemble characteristics of IE are still unclear. In this paper, a representation of the IE factor is incorporated into a three-ice-category microphysical scheme for use in long-term cloud-resolving model (CRM) simulations. Model results are compared with remote sensing observations, which suggest that, absent a physically based consideration of how IE comes about, the IE factor in tropical clouds is about 103 times larger than that in midlatitudinal ones. This significant difference in IE between the tropics and middle latitudes is consistent with the observation of stronger entrainment and detrainment in the tropics. In addition, the difference also suggests that cloud microphysical parameterizations depend on spatial resolution (or subgrid turbulence parameterizations within CRMs).


2016 ◽  
Vol 163 (10) ◽  
pp. F1139-F1145 ◽  
Author(s):  
Yutaka Tabe ◽  
Kazuki Yamada ◽  
Ryosuke Ichikawa ◽  
Yusuke Aoyama ◽  
Kengo Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document