scholarly journals Quantification of the transient response to base-level fall in a small mountain catchment: Sierra Nevada, southern Spain

Author(s):  
L. J. Reinhardt ◽  
Paul Bishop ◽  
T. B. Hoey ◽  
T. J. Dempster ◽  
D. C. W. Sanderson
2019 ◽  
Author(s):  
Helen W. Beeson ◽  
Scott W. McCoy

Abstract. Nonuniform rock uplift in the form of tilting has been documented in convergent margins, postorogenic landscapes, and extensional provinces. Despite the prevalence of tilting, the transient fluvial response to tilting has not been quantified such that tectonic histories involving tilt can be extracted from river network forms. We used numerical landscape evolution models to characterize the transient erosional response of a river network initially at equilibrium to a punctuated rigid-block tilting event. Using a model river network composed of linked 1-D river longitudinal profile evolution models, we show that the transient response to punctuated tilting creates characteristic forms or geomorphic signatures in mainstem and tributary profiles that are distinct from those generated by other perturbations such as a step change in uniform rock uplift rate or major truncation of headwater drainage area that push a river network away from equilibrium. These signatures include 1) a knickpoint in the mainstem that separates a downstream profile with uniform steepness (i.e., channel gradient normalized for drainage area) from an upstream profile with nonuniform steepness, with the mainstem above the knickpoint more out of equilibrium than the tributaries following forward tilting towards the outlet, versus the mainstem less out of equilibrium than the tributaries following back tilting towards the headwaters; 2) a pattern of mainstem incision below paleotopography markers that increases linearly up to the mainstem knickpoint, or vice-versa following back tilting; and 3) tributary knickzones with nonuniform steepness that mirrors that of the mainstem upstream of the slope-break knickpoint. Immediately after tilting, knickpoints form at the mainstem outlet and each mainstem-tributary junction. Time since tilting onset is recorded by mainstem knickpoint location relative to base level and by the upstream end of tributary knickzones relative to tributary-mainstem junctions. Tilt magnitude is recorded in the spatial gradient of mainstem incision depth and, in the forward tilting case, by tributary knickzone drop height. Heterogeneous lithology can modulate the transient response to tilting and, post-tilt, knickpoints can form anywhere in a stream network where more erodible rock occurs upstream of less erodible rock. With a full 2-D model, we show that stream segments flowing in the tilt direction have elevated channel gradient during the transient and that the magnitude of tilt can be recovered from the relationship between channel gradient and azimuth, but only shortly after tilting. Tilting is also reflected in network topologic changes via stream capture oriented in the direction of tilt. As an example of how these geomorphic signatures can be used in concert to estimate timing and magnitude of a tilting event, we show a sample of rivers draining the west slope of the Sierra Nevada, California, USA, a range long thought to have been tilted westward towards river outlets in the late Cenozoic.


2020 ◽  
Vol 8 (1) ◽  
pp. 123-159
Author(s):  
Helen W. Beeson ◽  
Scott W. McCoy

Abstract. Nonuniform rock uplift in the form of tilting has been documented in convergent margins, postorogenic landscapes, and extensional provinces. Despite the prevalence of tilting, the transient fluvial response to tilting has not been quantified such that tectonic histories involving tilt can be extracted from river network forms. We used numerical landscape evolution models to characterize the transient erosional response of a river network initially at equilibrium to rapid tilting. We focus on the case of punctuated rigid-block tilting, though we explore longer-duration tilting events and nonuniform uplift that deviates from perfect rigid-block tilting such as that observed when bending an elastic plate or with more pronounced internal deformation of a fault-bounded block. Using a model river network composed of linked 1-D river longitudinal profile evolution models, we show that the transient response to a punctuated rigid-block tilting event creates a suite of characteristic forms or geomorphic signatures in mainstem and tributary profiles that collectively are distinct from those generated by other perturbations, such as a step change in the uniform rock uplift rate or a major truncation of the headwater drainage area, that push a river network away from equilibrium. These signatures include (1) a knickpoint in the mainstem that separates a downstream profile with uniform steepness (i.e., channel gradient normalized for drainage area) from an upstream profile with nonuniform steepness, with the mainstem above the knickpoint more out of equilibrium than the tributaries following forward tilting toward the outlet, versus the mainstem less out of equilibrium than the tributaries following back tilting toward the headwaters; (2) a pattern of mainstem incision below paleo-topography markers that increases linearly up to the mainstem knickpoint or vice versa following back tilting; and (3) tributary knickzones with nonuniform steepness that mirrors that of the mainstem upstream of the slope-break knickpoint. Immediately after a punctuated tilting event, knickpoints form at the mainstem outlet and each mainstem–tributary junction. Time since the cessation of rapid tilting is recorded by the mainstem knickpoint location relative to base level and by the upstream end of tributary knickzones relative to the mainstem–tributary junction. Tilt magnitude is recorded in the spatial gradient of mainstem incision depth and, in the forward tilting case, also by the spatial gradient in tributary knickzone drop height. Heterogeneous lithology can modulate the transient response to tilting and, post tilt, knickpoints can form anywhere in a stream network where more erodible rock occurs upstream of less erodible rock. With a full 2-D model, we show that stream segments flowing in the tilt direction have elevated channel gradient early in the transient response. Tilting is also reflected in network topologic changes via stream capture oriented in the direction of tilt. As an example of how these geomorphic signatures can be used in concert with each other to estimate the timing and magnitude of a tilting event, we show a sample of rivers from two field sites: the Sierra Nevada, California, USA, and the Sierra San Pedro Mártir, Baja California, Mexico, two ranges thought to have been tilted westward toward river outlets in the late Cenozoic.


Geoderma ◽  
1996 ◽  
Vol 69 (3-4) ◽  
pp. 233-248 ◽  
Author(s):  
M. Sánchez-Marañón ◽  
R. Delgado ◽  
J. Párraga ◽  
G. Delgado

2012 ◽  
Vol 48 (3) ◽  
pp. 471-484 ◽  
Author(s):  
Antonio García-Alix ◽  
Gonzalo Jiménez-Moreno ◽  
R. Scott Anderson ◽  
Francisco J. Jiménez Espejo ◽  
Antonio Delgado Huertas

2020 ◽  
Author(s):  
Andreas Ludwig ◽  
Wolfgang Schwanghart ◽  
Florian Kober ◽  
Angela Landgraf

<p>The topographic evolution of landscapes strongly depends on the resistance of bedrock to erosion. Detachment-limited fluvial landscapes are commonly analyzed and modelled with the stream power incision model (SPIM) which parametrizes erosional efficiency by the bulk parameter K whose value is largely determined by bedrock erodibility. Inversion of the SPIM using longitudinal river profiles enables resolving values of K if histories of rock-uplift or base level change are known. Here, we present an approach to estimate K-values for the Wutach catchment, southern Germany. The catchment is a prominent example of river piracy that occurred ~18 ka ago as response to headward erosion of a tributary to the Rhine. Base level fall of up to 170 m triggered a wave of upstream migrating knickpoints that represent markers for the transient response of the landscape. Knickpoint migration along the main trunk stream and its tributaries passed different lithological settings, which allows us to estimate K for crystalline and sedimentary bedrock units of variable erodibility.</p>


2009 ◽  
Vol 68 (2) ◽  
pp. 206 ◽  
Author(s):  
Félix L. FIGUEROA ◽  
Nathalie KORBEE ◽  
Presentación CARRILLO ◽  
Juan Manuel MEDINA-SÁNCHEZ ◽  
Mayte MATA ◽  
...  

2012 ◽  
Vol 77 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Gonzalo Jiménez-Moreno ◽  
R. Scott Anderson

High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen andPediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease inPinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae,Artemisiaand Amaranthaceae from 4600 to 1200 cal yr BP.Pediastrumalso decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog,Pinusreforestation andOleacultivation at lower elevations.


Sign in / Sign up

Export Citation Format

Share Document