scholarly journals Characterization and location of infrasonic sources in active volcanoes: Mount Etna, September–November 2007

Author(s):  
A. Cannata ◽  
P. Montalto ◽  
E. Privitera ◽  
G. Russo
Keyword(s):  
2021 ◽  
Author(s):  
Charlotte Segonne ◽  
Nathalie Huret ◽  
Sébastien Payan ◽  
Mathieu Gouhier

<p>Monitoring active volcanoes activity passes through the detection of fluctuations in degassing levels which may reflect changes in the magma supply rate and help inform a short-term forecast of on-going eruptions. Infrared hyperspectral imagers, which is an imaging technology still little used for volcanoes monitoring, have been deployed for various field campaigns on active volcanoes recently. For example, the Hyper-Cam LWIR (LongWave InfraRed) ranging between 850-1300 cm<sup>-1</sup> (7.7 - 11.8 µm) with a spectral resolution up to 0.25 cm<sup>-1</sup>, provided high spectral resolution images from ground-based measurements of the Mount Etna (Sicily, Italy) plume during IMAGETNA campaign in June 2015. Processing the raw data and retrieving the infrared spectra with the LATMOS (Laboratoire Atmosphères Milieux Observations Spatiales) Atmospheric Retrieval Algorithm (LARA), a robust and a complete radiative transfer model, require a calculation time of ~7 days per image.</p><p>One of the main ways of risk mitigation effects of explosive eruptions is to get a fast and accurate quantification of SO<sub>2</sub> fluxes emitted by volcanoes. In this context, using the dataset acquired during IMAGETNA campaign at Mount Etna, a spectra classification methodology has been developed to drastically decrease the calculation time and reach near real-time retrievals of SO<sub>2</sub> slant column densities. The methodology is based on a network built on two layers of information from the extraction of spectral features in the O<sub>3</sub> and SO<sub>2</sub> emission bands. A training dataset of five SO<sub>2</sub> slant column densities images retrieved with the time-consuming pixel-by-pixel retrieval method allowed the creation of a library. The spectra classification makes it possible to process each hyperspectral image in less than 40 seconds. It opens the possibility to infer near real-time estimation of SO<sub>2</sub> emission fluxes from IR hyperspectral imager measurements.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Woitischek ◽  
Nicola Mingotti ◽  
Marie Edmonds ◽  
Andrew W. Woods

AbstractMany of the standard volcanic gas flux measurement approaches involve absorption spectroscopy in combination with wind speed measurements. Here, we present a new method using video images of volcanic plumes to measure the speed of convective structures combined with classical plume theory to estimate volcanic fluxes. We apply the method to a nearly vertical gas plume at Villarrica Volcano, Chile, and a wind-blown gas plume at Mount Etna, Italy. Our estimates of the gas fluxes are consistent in magnitude with previous reported fluxes obtained by spectroscopy and electrochemical sensors for these volcanoes. Compared to conventional gas flux measurement techniques focusing on SO2, our new model also has the potential to be used for sulfur-poor plumes in hydrothermal systems because it estimates the H2O flux.


2016 ◽  
Vol 451 (1) ◽  
pp. 183-208 ◽  
Author(s):  
C. Cigolini ◽  
M. Laiolo ◽  
D. Coppola ◽  
C. Trovato ◽  
G. Borgogno
Keyword(s):  

1980 ◽  
Vol 43 (330) ◽  
pp. 765-770 ◽  
Author(s):  
A. M. Duncan ◽  
R. M. F. Preston

SummaryThe chemical variation of clinopyroxene phenocrysts from the trachybasaltic lavas of Etna volcano is described. The phenocrysts show a limited, but distinct trend in chemical variation from calcic-augite in the hawaiites to augite in the benmoreites. The trend of this variation is unusual, being one of Mg-enrichment with differentiation of the magma. Ca shows a steady decrease in the clinopyroxenes from the hawaiites to the benmoreites. Na, however, shows little chemical variation in the pyroxenes. The trace element chemistry is briefly examined. The clinopyroxenes show well-developed oscillatory and sector zoning. The basal {11} sectors are enriched in Si and Mg and depleted in Ti, Al, and Fe relative to the {100}, {110}, and {010} prism sectors.


Sign in / Sign up

Export Citation Format

Share Document