scholarly journals Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006

Author(s):  
Cédric Chou ◽  
Paola Formenti ◽  
Michel Maille ◽  
Patrick Ausset ◽  
Günter Helas ◽  
...  
2011 ◽  
Vol 11 (19) ◽  
pp. 10149-10156 ◽  
Author(s):  
J. F. Kok

Abstract. The size distribution of mineral dust aerosols partially determines their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. The recently formulated brittle fragmentation theory of dust emission is consistent with this finding, whereas other theoretical models are not. The independence of the emitted dust size distribution with wind speed simplifies both the interpretation of geological records of dust deposition and the parameterization of dust emission in atmospheric circulation models.


2011 ◽  
Vol 11 (7) ◽  
pp. 19995-20012 ◽  
Author(s):  
J. F. Kok

Abstract. The size distribution of mineral dust aerosols greatly affects their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical dust emission models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. This finding is consistent with the recently formulated brittle fragmentation theory of dust emission, but inconsistent with other theoretical dust emission models. The independence of the emitted dust size distribution with wind speed simplifies both the parameterization of dust emission in atmospheric circulation models as well as the interpretation of geological records of dust deposition.


Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
pp. 725-741 ◽  
Author(s):  
Josef Gasteiger ◽  
Matthias Wiegner ◽  
Silke Groß ◽  
Volker Freudenthaler ◽  
Carlos Toledano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document