scholarly journals Variability of the Indian Ocean Dipole in coupled model paleoclimate simulations

2009 ◽  
Vol 114 (D11) ◽  
Author(s):  
J. Brown ◽  
A. H. Lynch ◽  
A. G. Marshall
2015 ◽  
Vol 28 (7) ◽  
pp. 2564-2583 ◽  
Author(s):  
Tim Cowan ◽  
Wenju Cai ◽  
Benjamin Ng ◽  
Matthew England

Abstract The tropical Indian Ocean has experienced a faster warming rate in the west than in the east over the twentieth century. The warming pattern resembles a positive Indian Ocean dipole (IOD) that is well captured by climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), forced with the two main anthropogenic forcings, long-lived greenhouse gases (GHGs), and aerosols. However, much less is known about how GHGs and aerosols influence the IOD asymmetry, including the negative sea surface temperature (SST) skewness in the east IOD pole (IODE). Here, it is shown that the IODE SST negative skewness is more enhanced by aerosols than by GHGs using single-factor forcing experiments from 10 CMIP5 models. Aerosols induce a greater mean zonal thermocline gradient along the tropical Indian Ocean than that forced by GHGs, whereby the thermocline is deeper in the east relative to the west. This generates strong asymmetry in the SST response to thermocline anomalies between warm and cool IODE phases in the aerosol-only experiments, enhancing the negative IODE SST skewness. Other feedback processes involving zonal wind, precipitation, and evaporation cannot solely explain the enhanced SST skewness by aerosols. An interexperiment comparison in one model with strong skewness confirms that the mean zonal thermocline gradient across the Indian Ocean determines the magnitude of the SST–thermocline asymmetry, which in turn controls the SST skewness strength. The findings suggest that as aerosol emissions decline and GHGs increase, this will likely contribute to a future weakening of the IODE SST skewness.


2017 ◽  
Vol 30 (19) ◽  
pp. 7953-7970 ◽  
Author(s):  
Takeshi Doi ◽  
Andrea Storto ◽  
Swadhin K. Behera ◽  
Antonio Navarra ◽  
Toshio Yamagata

Abstract The numerical seasonal prediction system using the Scale Interaction Experiment–Frontier version 1 (SINTEX-F) ocean–atmosphere coupled model has so far demonstrated a good performance for prediction of the Indian Ocean dipole mode (IOD) despite the fact that the system adopts a relatively simple initialization scheme based on nudging only the sea surface temperature (SST). However, it is to be expected that the system is not sufficient to capture in detail the subsurface oceanic precondition. Therefore, the authors have introduced a new three-dimensional variational ocean data assimilation (3DVAR) method that takes three-dimensional observed ocean temperature and salinity into account. Since the new system has successfully improved IOD predictions, the present study is showing that the ocean observational efforts in the tropical Indian Ocean are decisive for improvement of the IOD predictions and may have a large impact on important socioeconomic activities, particularly in the Indian Ocean rim countries.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1302 ◽  
Author(s):  
Qing-Gang Gao ◽  
Vonevilay Sombutmounvong ◽  
Lihua Xiong ◽  
Joo-Heon Lee ◽  
Jong-Suk Kim

In this study, we investigated extreme droughts in the Indochina peninsula and their relationship with the Indian Ocean Dipole (IOD) mode. Areas most vulnerable to drought were analyzed via statistical simulations of the IOD based on historical observations. Results of the long-term trend analysis indicate that areas with increasing spring (March–May) rainfall are mainly distributed along the eastern coast (Vietnam) and the northwestern portions of the Indochina Peninsula (ICP), while Central and Northern Laos and Northern Cambodia have witnessed a reduction in spring rainfall over the past few decades. This trend is similar to that of extreme drought. During positive IOD years, the frequency of extreme droughts was reduced throughout Vietnam and in the southwestern parts of China, while increased drought was observed in Cambodia, Central Laos, and along the coastline adjacent to the Myanmar Sea. Results for negative IOD years were similar to changes observed for positive IOD years; however, the eastern and northern parts of the ICP experienced reduced droughts. In addition, the results of the statistical simulations proposed in this study successfully simulate drought-sensitive areas and evolution patterns of various IOD changes. The results of this study can help improve diagnostic techniques for extreme droughts in the ICP.


2016 ◽  
Vol 137 (1-2) ◽  
pp. 217-230 ◽  
Author(s):  
Philipp Hochreuther ◽  
Jakob Wernicke ◽  
Jussi Grießinger ◽  
Thomas Mölg ◽  
Haifeng Zhu ◽  
...  

2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


SOLA ◽  
2011 ◽  
Vol 7 ◽  
pp. 13-16 ◽  
Author(s):  
Toru Tamura ◽  
Toshio Koike ◽  
Akio Yamamoto ◽  
Masaki Yasukawa ◽  
Masaru Kitsuregawa

2017 ◽  
Vol 122 (12) ◽  
pp. 9591-9604 ◽  
Author(s):  
S. Fournier ◽  
J. Vialard ◽  
M. Lengaigne ◽  
T. Lee ◽  
M. M. Gierach ◽  
...  

2012 ◽  
Vol 140 (12) ◽  
pp. 3867-3884 ◽  
Author(s):  
Li Shi ◽  
Harry H. Hendon ◽  
Oscar Alves ◽  
Jing-Jia Luo ◽  
Magdalena Balmaseda ◽  
...  

Abstract In light of the growing recognition of the role of surface temperature variations in the Indian Ocean for driving global climate variability, the predictive skill of the sea surface temperature (SST) anomalies associated with the Indian Ocean dipole (IOD) is assessed using ensemble seasonal forecasts from a selection of contemporary coupled climate models that are routinely used to make seasonal climate predictions. The authors assess predictions from successive versions of the Australian Bureau of Meteorology Predictive Ocean–Atmosphere Model for Australia (POAMA 15b and 24), successive versions of the NCEP Climate Forecast System (CFSv1 and CFSv2), the ECMWF seasonal forecast System 3 (ECSys3), and the Frontier Research Centre for Global Change system (SINTEX-F) using seasonal hindcasts initialized each month from January 1982 to December 2006. The lead time for skillful prediction of SST in the western Indian Ocean is found to be about 5–6 months while in the eastern Indian Ocean it is only 3–4 months when all start months are considered. For the IOD events, which have maximum amplitude in the September–November (SON) season, skillful prediction is also limited to a lead time of about one season, although skillful prediction of large IOD events can be longer than this, perhaps up to about two seasons. However, the tendency for the models to overpredict the occurrence of large events limits the confidence of the predictions of these large events. Some common model errors, including a poor representation of the relationship between El Niño and the IOD, are identified indicating that the upper limit of predictive skill of the IOD has not been achieved.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


2015 ◽  
Vol 30 (10) ◽  
pp. 1391-1405 ◽  
Author(s):  
Nerilie J. Abram ◽  
Bronwyn C. Dixon ◽  
Madelaine G. Rosevear ◽  
Benjamin Plunkett ◽  
Michael K. Gagan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document