Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models

2009 ◽  
Vol 36 (11) ◽  
Author(s):  
Xin Wang ◽  
Dongxiao Wang ◽  
Wen Zhou
Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 469
Author(s):  
Yanli Tang ◽  
Lijuan Li ◽  
Bin Wang ◽  
Pengfei Lin ◽  
Wenjie Dong ◽  
...  

Four cross-coupled models were used to investigate the relative contributions of atmospheric and oceanic components to the asymmetry of the El Niño–Southern Oscillation (ENSO). Strong El Niño and La Niña events related to the negative heat flux feedbacks were found to be determined mainly by the atmospheric component, and the stronger sea surface temperature (SST) anomalies in the warm phase did not lead to an increased SST asymmetry. The skewness of the four models could be affected by both atmospheric and oceanic components; the atmospheric component determines the strength of positive and negative SST anomalies, and the oceanic component affects the strength of the negative SST anomalies in the cold phase under the same atmospheric component group. The Bjerknes stability index (BJ index) of warm and cold phases contributed to the El Niño–La Niña SSTA asymmetries in observation, but the BJ index did not necessarily explain the El Niño–La Niña SSTA asymmetries in climate model simulations. The SST asymmetries in these four models were closely associated with convective precipitation and wind stress asymmetries, which are also determined by both the atmospheric and oceanic components.


2008 ◽  
Vol 21 (22) ◽  
pp. 5745-5763 ◽  
Author(s):  
Zhengqing Ye ◽  
William W. Hsieh

Abstract With data from 12 coupled models in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), climate under year 2000 greenhouse gas (GHG) + aerosol forcing was compared with climate under preindustrial conditions. In the tropical Pacific, the warming in the mean sea surface temperatures (SST) was found to have an El Niño–like pattern, while both the equatorial zonal overturning circulation and the meridional overturning circulation weakened under increased GHG forcing. For the El Niño–Southern Oscillation (ENSO), the asymmetry in the SST anomalies between El Niño and La Niña was found to be enhanced under increased GHG, for both the ensemble model data and the observed data (1900–99). Enhanced asymmetry between El Niño and La Niña was also manifested in the anomalies of the zonal wind stress, the equatorial undercurrent, and the meridional overturning circulation in the increased GHG simulations. The enhanced asymmetry in the model SST anomalies was mainly caused by the greatly intensified vertical nonlinear dynamic heating (NDH) anomaly (i.e., product of the vertical velocity anomaly and the negative vertical temperature gradient anomaly) during El Niño (but not during La Niña). Under increased GHG, the enhanced positive NDH anomalies during El Niño, when time averaged over the whole record, would change the SST mean state by an El Niño–like pattern.


2021 ◽  
pp. 1-47
Author(s):  
Bor-Ting Jong ◽  
Mingfang Ting ◽  
Richard Seager

AbstractDuring the summer when an El Niño is transitioning to a La Niña, the extratropical teleconnections exert robust warming anomalies over the United States Midwest threatening agricultural production. This study assesses the performance of current climate models in capturing the prominent observed extratropical responses over North America during the transitioning La Niña summer, based on Atmospheric General Circulation Model experiments and coupled models from the North American Multimodel Ensemble (NMME). The ensemble mean of the SST-forced experiments across the transitioning La Niña summers does not capture the robust warming in the Midwest. The SST-forced experiments do not produce consistent subtropical western Pacific (WP) negative precipitation anomalies and this leads to the poor simulations of extratropical teleconnections over North America. In the NMME models, with active air-sea interaction, the negative WP precipitation anomalies show better agreement across the models and with observations. However, the downstream wave-train pattern and the resulting extratropical responses over North America exhibit large disagreement across the models and are consistently weaker than in observations. Furthermore, in these climate models, an anomalous anticyclone does not robustly translate into warm anomaly over the Midwest, in disagreement with observations. This work suggests that, during the El Niño to La Niña transitioning summer, active air-sea interaction is important in simulating tropical precipitation over the WP. Nevertheless, skillful representations of the Rossby wave propagation and land-atmosphere processes in climate models are also essential for skillful simulations of extratropical responses over North America.


2017 ◽  
Vol 31 (1) ◽  
pp. 355-368 ◽  
Author(s):  
Inmaculada Vega ◽  
David Gallego ◽  
Pedro Ribera ◽  
F. de Paula Gómez-Delgado ◽  
Ricardo García-Herrera ◽  
...  

Abstract A new index, the western North Pacific directional index (WNPDI), based on historical wind direction observations taken aboard sailing ships, has been developed to characterize the western North Pacific summer monsoon (WNPSM) since 1898. The WNPDI measures the persistence of the surface westerly winds in the region 5°–15°N, 100°–130°E and easterly winds in the region 20°–30°N, 110°–140°E, exhibiting a consistent relationship with the summer precipitation in the areas affected by the WNPSM throughout the entire twentieth century. Its length doubles that of the previous WNPSM index (1948–2014) based on reanalysis products, which allows uncovering different relevant features of the WNPSM variability. The WNPSM had a significant interdecadal variability throughout the twentieth century. In particular, the period 1918–48 was characterized by less variable and stronger monsoons than in recent decades. Additionally, the relationship between the WNPSM and ENSO or El Niño Modoki has been evaluated during the entire twentieth century for the first time. It is confirmed that the WNPSM tends to be strong (weak) when El Niño (La Niña) develops during the whole record. Nevertheless, the relationship during the ENSO-decaying phase is not stable in time. Thus, the WNPSM tended to be strong (weak) when La Niña (El Niño) decayed only since the late 1950s, with an opposite relationship in the earliest part of the record. El Niño Modoki shows a rather stable and high correlation with the WNPDI during the whole study period throughout the twentieth century.


2017 ◽  
Vol 30 (12) ◽  
pp. 4705-4733 ◽  
Author(s):  
Yuko M. Okumura ◽  
Tianyi Sun ◽  
Xian Wu

El Niño–Southern Oscillation (ENSO) in a 1300-yr preindustrial control simulation of the Community Climate System Model, version 4 (CCSM4), exhibits distinct modulation in association with tropical Pacific decadal variability (TPDV). The frequency and duration of El Niño events modulate with changes in the interbasin sea surface temperature (SST) gradient related to the leading mode of TPDV, which resembles the interdecadal Pacific oscillation (IPO). La Niña shows similar changes with the IPO but is also controlled by changes in El Niño that often precedes La Niña, and these effects tend to cancel each other. The amplitude of ENSO, on the other hand, is closely related to the second leading mode of TPDV that affects the zonal and meridional contrast of tropical Pacific climate. Significant changes in the pattern and seasonal evolution related to this TPDV mode are found mainly for El Niño because of the nonlinear relation between the atmospheric deep convection and SSTs. The resultant changes in the amplitude of El Niño, in turn, affect the amplitude and duration of the following La Niña, as well as the asymmetry in their patterns and duration. The decadal ENSO modulation associated with both TPDV modes is not symmetrical between El Niño and La Niña and thus is not likely to occur solely as a result of random variability. The patterns of TPDV in CCSM4 have resemblance to those simulated by its atmospheric component coupled to a slab ocean model, suggesting that TPDV induced by stochastic atmospheric variability interacts with the ENSO dynamics.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christine T. Y. Chung ◽  
Scott B. Power ◽  
Arnold Sullivan ◽  
François Delage

AbstractTropical Pacific variability (TPV) heavily influences global climate, but much is still unknown about its drivers. We examine the impact of South Pacific variability on the modes of TPV: the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). We conduct idealised coupled experiments in which we suppress temperature and salinity variability at all oceanic levels in the South Pacific. This reduces decadal variability in the equatorial Pacific by ~30% and distorts the spatial pattern of the IPO. There is little change to overall interannual variability, however there is a decrease in the magnitude of the largest 5% of both El Niño and La Niña sea-surface temperature (SST) anomalies. Possible reasons for this include: (i) reduced decadal variability means that interannual SST variability is superposed onto a ‘flatter’ background signal, (ii) suppressing South Pacific variability leads to the alteration of coupled processes linking the South and equatorial Pacific. A small but significant mean state change arising from the imposed suppression may also contribute to the weakened extreme ENSO SST anomalies. The magnitude of both extreme El Niño and La Niña SST anomalies are reduced, and the associated spatial patterns of change of upper ocean heat content and wind stress anomalies are markedly different for both types of events.


2014 ◽  
Vol 27 (16) ◽  
pp. 6135-6154 ◽  
Author(s):  
F. R. Robertson ◽  
M. G. Bosilovich ◽  
J. B. Roberts ◽  
R. H. Reichle ◽  
R. Adler ◽  
...  

Abstract Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology. Over land, reanalysis VMFC and P − evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger than P − ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smaller P − ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date. When integrated over the global oceans, E and especially P variations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially in E. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. The P variations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.


2019 ◽  
Vol 3 ◽  
pp. 1219
Author(s):  
Oki Adrianto ◽  
Sudirman Sudirman ◽  
Suwandi Suwandi
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

Perekonomian Provinsi Nusa Tenggara Timur secara sektoral masih didominasi sektor pertanian.Tanaman jagung menjadi salah satu produksi tanaman pangan terbesar berdasarkan data dari Dinas Pertanian dan Perkebunan Provinsi Nusa Tenggara Timur tahun 2015. Peningkatan produksi pertanian dapat dilakukan melalui berbagai strategi adaptasi dan upaya penanganan bencana, salah satu upaya tersebut adalah dengan penyediaan informasi iklim terkait penentuan daerah-daerah rawan kekeringan. Tujuan dari penelitian ini adalah untuk mengetahui sebaran wilayah rawan kekeringan lahan jagung bulanan di Provinsi Nusa Tenggara Timur saat kondisi El Nino dan La Nina dengan periodeisasi bulanan januari hingga desember. Data yang digunakan dalam penelitian ini adalah data curah hujan rata rata bulanan di 19 pos hujan di Provinsi Nusa Tenggara Timur dan suhu udara rata-rata bulanan dihitung menggunakan pendekatan teori Brack dengan titik referensi Stasiun Klimatologi Lasiana Kupang. Periode dari masing-masing data yang digunakan adalah dari tahun 1991 dan 1997 digunakan sebagai tahun El Nino dan tahun 1999 dan 2010 digunakan sebagai tahun La Nina. Metode yang digunakan untuk menentukan tingkat rawan kekeringan dengan menggunakan pembobotan berdasarkan penjumlahan bobot tipe iklim Oldeman dan bobot ketersediaan air tanah. Hasil penelitian menunjukkan sebaran daerah kekeringan di Provinsi Nusa Tenggara Timurpada tahun el nino lebih luas dibandingkan tahun la nina.


2018 ◽  
Vol 1 ◽  
pp. e2018014
Author(s):  
Samya de Freitas MOREIRA ◽  
Cleiciane Silva da CONCEIÇÃO ◽  
Milla Cristina Santos da CRUZ ◽  
Antônio PEREIRA JÚNIOR
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

Sign in / Sign up

Export Citation Format

Share Document