scholarly journals Asymmetric Modulation of El Niño and La Niña and the Linkage to Tropical Pacific Decadal Variability

2017 ◽  
Vol 30 (12) ◽  
pp. 4705-4733 ◽  
Author(s):  
Yuko M. Okumura ◽  
Tianyi Sun ◽  
Xian Wu

El Niño–Southern Oscillation (ENSO) in a 1300-yr preindustrial control simulation of the Community Climate System Model, version 4 (CCSM4), exhibits distinct modulation in association with tropical Pacific decadal variability (TPDV). The frequency and duration of El Niño events modulate with changes in the interbasin sea surface temperature (SST) gradient related to the leading mode of TPDV, which resembles the interdecadal Pacific oscillation (IPO). La Niña shows similar changes with the IPO but is also controlled by changes in El Niño that often precedes La Niña, and these effects tend to cancel each other. The amplitude of ENSO, on the other hand, is closely related to the second leading mode of TPDV that affects the zonal and meridional contrast of tropical Pacific climate. Significant changes in the pattern and seasonal evolution related to this TPDV mode are found mainly for El Niño because of the nonlinear relation between the atmospheric deep convection and SSTs. The resultant changes in the amplitude of El Niño, in turn, affect the amplitude and duration of the following La Niña, as well as the asymmetry in their patterns and duration. The decadal ENSO modulation associated with both TPDV modes is not symmetrical between El Niño and La Niña and thus is not likely to occur solely as a result of random variability. The patterns of TPDV in CCSM4 have resemblance to those simulated by its atmospheric component coupled to a slab ocean model, suggesting that TPDV induced by stochastic atmospheric variability interacts with the ENSO dynamics.

2013 ◽  
Vol 26 (5) ◽  
pp. 1485-1501 ◽  
Author(s):  
Jung Choi ◽  
Soon-Il An ◽  
Sang-Wook Yeh ◽  
Jin-Yi Yu

Abstract Outputs from coupled general circulation models (CGCMs) are used in examining tropical Pacific decadal variability (TPDV) and their relationships with El Niño–Southern Oscillation (ENSO). Herein TPDV is classified as either ENSO-induced TPDV (EIT) or ENSO-like TPDV (ELT), based on their correlations with a decadal modulation index of ENSO amplitude and spatial pattern. EIT is identified by the leading EOF mode of the low-pass filtered equatorial subsurface temperature anomalies and is highly correlated with the decadal ENSO modulation index. This mode is characterized by an east–west dipole structure along the equator. ELT is usually defined by the first EOF mode of subsurface temperature, of which the spatial structure is similar to ENSO. Generally, this mode is insignificantly correlated with the decadal modulation of ENSO. EIT closely interacts with the residuals induced by ENSO asymmetries, both of which show similar spatial structures. On the other hand, ELT is controlled by slowly varying ocean adjustments analogous to a recharge oscillator of ENSO. Both types of TPDV have similar spectral peaks on a decadal-to-interdecadal time scale. Interestingly, the variances of both types of TPDV depend on the strength of connection between El Niño–La Niña residuals and EIT, such that the strong two-way feedback between them enhances EIT and reduces ELT. The strength of the two-way feedback is also related to ENSO variability. The flavors of El Niño–La Niña with respect to changes in the tropical Pacific mean state tend to be well simulated when ENSO variability is larger in CGCMs. As a result, stronger ENSO variability leads to intensified interactive feedback between ENSO residuals and enhanced EIT in CGCMs.


2011 ◽  
Vol 24 (20) ◽  
pp. 5423-5434 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines preindustrial simulations from Coupled Model Intercomparison Project, phase 3 (CMIP3), models to show that a tendency exists for El Niño sea surface temperature anomalies to be located farther eastward than La Niña anomalies during strong El Niño–Southern Oscillation (ENSO) events but farther westward than La Niña anomalies during weak ENSO events. Such reversed spatial asymmetries are shown to force a slow change in the tropical Pacific Ocean mean state that in return modulates ENSO amplitude. CMIP3 models that produce strong reversed asymmetries experience cyclic modulations of ENSO intensity, in which strong and weak events occur during opposite phases of a decadal variability mode associated with the residual effects of the reversed asymmetries. It is concluded that the reversed spatial asymmetries enable an ENSO–tropical Pacific mean state interaction mechanism that gives rise to a decadal modulation of ENSO intensity and that at least three CMIP3 models realistically simulate this interaction mechanism.


2015 ◽  
Vol 28 (8) ◽  
pp. 3073-3092 ◽  
Author(s):  
Feiyan Guo ◽  
Qinyu Liu ◽  
S. Sun ◽  
Jianling Yang

Abstract Using observational data and phase 5 of the Coupled Model Intercomparison Project (CMIP5) model outputs [the preindustrial (PI) control run of the Community Climate System Model, version 4 (CCSM4) and historical simulations of 17 CMIP5 models], Indian Ocean dipoles (IODs) with a peak in fall are categorized into three types. The first type is closely related to the development phase of El Niño/La Niña. The second type evolves from the basinwide warming (cooling) in the tropical Indian Ocean (IO), usually occurring in the year following El Niño (La Niña). The third type is independent of El Niño and La Niña. The dominant trigger condition for the first (third) type of IOD is the anomalous Walker circulation (anomalous cross-equatorial flow); the anomalous zonal sea surface temperature (SST) gradient in the tropical IO is the trigger condition for the second type. The occurrence of anomalous ocean Rossby waves during the forming stage of IO basinwide mode and their effect on SST in the southwestern IO during winter and spring are critical for early development of the second type of IOD. Although most models simulate a stronger El Niño–Southern Oscillation and IOD compared to the observations, this does not influence the phase-locking and classification of the IOD peaking in the fall.


2014 ◽  
Vol 27 (19) ◽  
pp. 7335-7355 ◽  
Author(s):  
Pedro N. DiNezio ◽  
Clara Deser

Abstract A large fraction (35%–50%) of observed La Niña events last two years or longer, in contrast to the great majority of El Niño events, which last one year. Here, the authors explore the nonlinear processes responsible for the multiyear persistence of La Niña in the Community Climate System Model, version 4 (CCSM4), a coupled climate model that simulates the asymmetric duration of La Niña and El Niño events realistically. The authors develop a nonlinear delayed-oscillator (NDO) model of the El Niño–Southern Oscillation (ENSO) to explore the mechanisms governing the duration of La Niña. The NDO includes nonlinear and seasonally dependent feedbacks derived from the CCSM4 heat budget, which allow it to simulate key ENSO features in quantitative agreement with CCSM4. Sensitivity experiments with the NDO show that the nonlinearity in the delayed thermocline feedback is the sole process controlling the duration of La Niña events. The authors’ results show that, as La Niña events become stronger, the delayed thermocline response does not increase proportionally. This nonlinearity arises from two processes: 1) the response of winds to sea surface temperature anomalies and 2) the ability of thermocline depth anomalies to influence temperatures at the base of the mixed layer. Thus, strong La Niña events require that the thermocline remains deeper for longer than 1 yr for sea surface temperatures to return to neutral. Ocean reanalysis data show evidence for this thermocline nonlinearity, suggesting that this process could be at work in nature.


2013 ◽  
Vol 26 (18) ◽  
pp. 7280-7297 ◽  
Author(s):  
Tomomichi Ogata ◽  
Shang-Ping Xie ◽  
Andrew Wittenberg ◽  
De-Zheng Sun

Abstract The amplitude of El Niño–Southern Oscillation (ENSO) displays pronounced interdecadal modulations in observations. The mechanisms for the amplitude modulation are investigated using a 2000-yr preindustrial control integration from the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). ENSO amplitude modulation is highly correlated with the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV), which features equatorial zonal dipoles in sea surface temperature (SST) and subsurface temperature along the thermocline. Experiments with an ocean general circulation model indicate that both interannual and decadal-scale wind variability are required to generate decadal-scale tropical Pacific temperature anomalies at the sea surface and along the thermocline. Even a purely interannual and sinusoidal wind forcing can produce substantial decadal-scale effects in the equatorial Pacific, with SST cooling in the west, subsurface warming along the thermocline, and enhanced upper-ocean stratification in the east. A mechanism is proposed by which residual effects of ENSO could serve to alter subsequent ENSO stability, possibly contributing to long-lasting epochs of extreme ENSO behavior via a coupled feedback with TPDV.


2019 ◽  
Vol 32 (18) ◽  
pp. 5941-5965 ◽  
Author(s):  
Xian Wu ◽  
Yuko M. Okumura ◽  
Pedro N. DiNezio

Abstract The temporal evolution of El Niño and La Niña varies greatly from event to event. To understand the dynamical processes controlling the duration of El Niño and La Niña events, a suite of observational data and a long control simulation of the Community Earth System Model, version 1, are analyzed. Both observational and model analyses show that the duration of El Niño is strongly affected by the timing of onset. El Niño events that develop early tend to terminate quickly after the mature phase because of the early arrival of delayed negative oceanic feedback and fast adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific Ocean warming. The duration of La Niña events is, on the other hand, strongly influenced by the amplitude of preceding warm events. La Niña events preceded by a strong warm event tend to persist into the second year because of large initial discharge of the equatorial oceanic heat content and delayed adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific cooling. For both El Niño and La Niña, the interbasin sea surface temperature (SST) adjustments reduce the anomalous SST gradient toward the tropical Pacific and weaken surface wind anomalies over the western equatorial Pacific, hastening the event termination. Other factors external to the dynamics of El Niño–Southern Oscillation, such as coupled variability in the tropical Atlantic and Indian Oceans and atmospheric variability over the North Pacific, also contribute to the diversity of event duration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christine T. Y. Chung ◽  
Scott B. Power ◽  
Arnold Sullivan ◽  
François Delage

AbstractTropical Pacific variability (TPV) heavily influences global climate, but much is still unknown about its drivers. We examine the impact of South Pacific variability on the modes of TPV: the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). We conduct idealised coupled experiments in which we suppress temperature and salinity variability at all oceanic levels in the South Pacific. This reduces decadal variability in the equatorial Pacific by ~30% and distorts the spatial pattern of the IPO. There is little change to overall interannual variability, however there is a decrease in the magnitude of the largest 5% of both El Niño and La Niña sea-surface temperature (SST) anomalies. Possible reasons for this include: (i) reduced decadal variability means that interannual SST variability is superposed onto a ‘flatter’ background signal, (ii) suppressing South Pacific variability leads to the alteration of coupled processes linking the South and equatorial Pacific. A small but significant mean state change arising from the imposed suppression may also contribute to the weakened extreme ENSO SST anomalies. The magnitude of both extreme El Niño and La Niña SST anomalies are reduced, and the associated spatial patterns of change of upper ocean heat content and wind stress anomalies are markedly different for both types of events.


2020 ◽  
Vol 33 (17) ◽  
pp. 7289-7302
Author(s):  
Geon-Il Kim ◽  
Jong-Seong Kug

AbstractOn the basis of 32 long-term simulations with state-of-the-art coupled GCMs, we investigate the relationship between tropical Pacific decadal variability (TPDV) and El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode for the 11-yr moving sea surface temperatures (SSTs) in the coupled models is commonly characterized by El Niño–like decadal variability with Bjerknes air–sea interaction. However, the second EOF mode can be separated into two groups, such that 1) some models have a zonal dipole SST pattern and 2) other models are characterized by a meridional dipole pattern. We found that models with the zonal dipole pattern in the second mode tend to simulate strong ENSO amplitude and asymmetry in comparison with those of the other models. Also, the residual patterns, which are defined as the summation of El Niño and La Niña SST composite anomalies, are very similar to the decadal dipole pattern, which suggests that ENSO residuals can cause the dipole decadal variability. It is found that decadal modulation of ENSO variability in these models strongly depends on the phase of the dipole decadal variability. The decadal changes in ENSO residual correspond well with the decadal changes in the dipole pattern, and the nonlinear dynamic heating terms by ENSO anomalies are well matched with the decadal dipole pattern.


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


Sign in / Sign up

Export Citation Format

Share Document