scholarly journals Climate model simulated changes in temperature extremes due to land cover change

2012 ◽  
Vol 117 (D4) ◽  
pp. n/a-n/a ◽  
Author(s):  
F. B. Avila ◽  
A. J. Pitman ◽  
M. G. Donat ◽  
L. V. Alexander ◽  
G. Abramowitz
2017 ◽  
Vol 37 ◽  
pp. 59-74 ◽  
Author(s):  
Xing Li ◽  
Haishan Chen ◽  
Hong Liao ◽  
Wenjian Hua ◽  
Shanlei Sun ◽  
...  

2012 ◽  
Vol 3 (2) ◽  
pp. 597-641 ◽  
Author(s):  
A. J. Pitman ◽  
N. de Noblet-Ducoudré ◽  
F. B. Avila ◽  
L. V. Alexander ◽  
J.-P. Boisier ◽  
...  

Abstract. The impact of historical land use induced land cover change (LULCC) on regional-scale climate extremes is examined using four climate models within the Land Use and Climate, IDentification of robust impacts project. To assess those impacts, multiple indices based on daily maximum and minimum temperatures and daily precipitation were used. We contrast the impact of LULCC on extremes with the impact of an increase in atmospheric CO2 from 280 ppmv to 375 ppmv. In general, changes in both high and low temperature extremes are similar to the simulated change in mean temperature caused by LULCC and are restricted to regions of intense modification. The impact of LULCC on both means and on most temperature extremes is statistically significant. While the magnitude of the LULCC induced change in the extremes can be of similar magnitude to the response to the change in CO2, the impacts of LULCC are much more geographically isolated. For most models the impacts of LULCC oppose the impact of the increase in CO2 except for one model where the CO2-caused changes in the extremes is amplified. While we find some evidence that individual models respond consistently to LULCC in the simulation of changes in rainfall and rainfall extremes, LULCC's role in affecting rainfall is much less clear and less commonly statistically significant, with the exception of a consistent impact over South East Asia. Since the simulated response of mean and extreme temperature to LULCC is relatively large, we conclude that unless this forcing is included we risk erroneous conclusions regarding the drivers of temperature changes over regions of intense LULCC.


2008 ◽  
Vol 47 (4) ◽  
pp. 1038-1060 ◽  
Author(s):  
K. W. Oleson ◽  
G. B. Bonan ◽  
J. Feddema ◽  
M. Vertenstein ◽  
C. S. B. Grimmond

Abstract Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.


2009 ◽  
Vol 22 (12) ◽  
pp. 3248-3269 ◽  
Author(s):  
Kirsten L. Findell ◽  
Andrew J. Pitman ◽  
Matthew H. England ◽  
Philip J. Pegion

Abstract The atmospheric and land components of the Geophysical Fluid Dynamics Laboratory’s (GFDL’s) Climate Model version 2.1 (CM2.1) is used with climatological sea surface temperatures (SSTs) to investigate the relative climatic impacts of historical anthropogenic land cover change (LCC) and realistic SST anomalies. The SST forcing anomalies used are analogous to signals induced by El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the background global warming trend. Coherent areas of LCC are represented throughout much of central and eastern Europe, northern India, southeastern China, and on either side of the ridge of the Appalachian Mountains in North America. Smaller areas of change are present in various tropical regions. The land cover changes in the model are almost exclusively a conversion of forests to grasslands. Model results show that, at the global scale, the physical impacts of LCC on temperature and rainfall are less important than large-scale SST anomalies, particularly those due to ENSO. However, in the regions where the land surface has been altered, the impact of LCC can be equally or more important than the SST forcing patterns in determining the seasonal cycle of the surface water and energy balance. Thus, this work provides a context for the impacts of LCC on climate: namely, strong regional-scale impacts that can significantly change globally averaged fields but that rarely propagate beyond the disturbed regions. This suggests that proper representation of land cover conditions is essential in the design of climate model experiments, particularly if results are to be used for regional-scale assessments of climate change impacts.


2007 ◽  
Vol 20 (14) ◽  
pp. 3621-3634 ◽  
Author(s):  
Kirsten L. Findell ◽  
Elena Shevliakova ◽  
P. C. D. Milly ◽  
Ronald J. Stouffer

Abstract Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory’s climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation.


2006 ◽  
Vol 10 (7) ◽  
pp. 1-27 ◽  
Author(s):  
G. T. Narisma ◽  
A. J. Pitman

Abstract The potential role of the impacts of land-cover changes (LCCs) in the Australian climate is investigated within the context of increasing CO2 concentrations and temperature. Specifically, it is explored if possible scenarios for LCC can moderate or amplify CO2-induced changes in climate over Australia. The January climate of Australia is simulated under three different land-cover-change scenarios using a high-resolution regional climate model. The land-cover-change scenarios include a steady-state land cover that is equivalent to current land cover, a low-reforestation scenario that recovers approximately 25% of the trees replaced by grasslands within the last 200 yr, and a high-reforestation scenario that recovers at least 75% of the deforested regions. The model was driven by boundary conditions taken from transitory climate simulations from a general circulation model that included two climate scenarios based on two projected scenarios of CO2 concentration increase. The results show that reforestation has the potential to reduce the projected increase in Australian temperatures in 2050 and 2100 by as much as 40% and 20%, respectively. This cooling effect, however, is highly localized and occurs only in regions of reforestation. The results therefore hint that the potential of reforestation to moderate the impact of global warming may be significantly limited by the spatial scale of reforestation. In terms of deforestation, results show that any future land clearing can exacerbate the projected warming in certain regions of Australia. Carbon-related variables are also analyzed and results show that changes in net CO2 flux may be influenced more by soil respiration than by photosynthesis. The results herein encourage studies on the inclusion of land-cover-change scenarios in future climate change projection simulations of the Australian climate.


2012 ◽  
Vol 3 (2) ◽  
pp. 213-231 ◽  
Author(s):  
A. J. Pitman ◽  
N. de Noblet-Ducoudré ◽  
F. B. Avila ◽  
L. V. Alexander ◽  
J.-P. Boisier ◽  
...  

Abstract. The impact of historical land use induced land cover change (LULCC) on regional-scale climate extremes is examined using four climate models within the Land Use and Climate, IDentification of robust impacts project. To assess those impacts, multiple indices based on daily maximum and minimum temperatures and daily precipitation were used. We contrast the impact of LULCC on extremes with the impact of an increase in atmospheric CO2 from 280 ppmv to 375 ppmv. In general, consistent changes in both high and low temperature extremes are similar to the simulated change in mean temperature caused by LULCC and are restricted to regions of intense modification. The impact of LULCC on both means and on most temperature extremes is statistically significant. While the magnitude of the LULCC-induced change in the extremes can be of similar magnitude to the response to the change in CO2, the impacts of LULCC are much more geographically isolated. For most models, the impacts of LULCC oppose the impact of the increase in CO2 except for one model where the CO2-caused changes in the extremes are amplified. While we find some evidence that individual models respond consistently to LULCC in the simulation of changes in rainfall and rainfall extremes, LULCC's role in affecting rainfall is much less clear and less commonly statistically significant, with the exception of a consistent impact over South East Asia. Since the simulated response of mean and extreme temperatures to LULCC is relatively large, we conclude that unless this forcing is included, we risk erroneous conclusions regarding the drivers of temperature changes over regions of intense LULCC.


Sign in / Sign up

Export Citation Format

Share Document