Application of a Regional Climate Model to Assess Changes in the Climatology of the Eastern United States and Cuba Associated With Historic Land Cover Change

2019 ◽  
Vol 124 (22) ◽  
pp. 11722-11745
Author(s):  
S. Hostetler ◽  
R. Reker ◽  
J. Alder ◽  
T. Loveland ◽  
D. Willard ◽  
...  
Author(s):  
Vinícius Machado Rocha ◽  
Francis Wagner Silva Correia ◽  
Prakki Satyamurty ◽  
Saulo Ribeiro De Freitas ◽  
Demerval Soares Moreira ◽  
...  

2014 ◽  
Vol 27 (15) ◽  
pp. 5708-5723 ◽  
Author(s):  
Marc P. Marcella ◽  
Elfatih A. B. Eltahir

Abstract This article presents a new irrigation scheme and biome to the dynamic vegetation model, Integrated Biosphere Simulator (IBIS), coupled to version 3 of the Regional Climate Model (RegCM3-IBIS). The new land cover allows for only the plant functional type (crop) to exist in an irrigated grid cell. Irrigation water (i.e., negative runoff) is applied until the soil root zone reaches relative field capacity. The new scheme allows for irrigation scheduling (i.e., when to apply water) and for the user to determine the crop to be grown. Initial simulations show a large sensitivity of the scheme to soil texture types, how the water is applied, and the climatic conditions over the region. Application of the new scheme is tested over West Africa, specifically Mali and Niger, to simulate the potential irrigation of the Niger River. A realistic representation of irrigation of the Niger River is performed by constraining the land irrigated by the annual flow of the Niger River and the amount of arable land in the region as reported by the Food and Agriculture Organization of the United Nations (FAO). A 30-yr simulation including irrigated cropland is compared to a 30-yr simulation that is identical but with no irrigation of the Niger. Results indicate a significant greening of the irrigated land as evapotranspiration over the crop fields largely increases—mostly via increases in transpiration from plant growth. The increase in the evapotranspiration, or latent heat flux (by 65–150 W m−2), causes a significant decrease in the sensible heat flux while surface temperatures cool on average by nearly 5°C. This cooling is felt downwind, where average daily temperatures outside the irrigation are reduced by 0.5°–1.0°C. Likewise, large increases in 2-m specific humidity are experienced across the irrigated cropland (on the order of 5 g kg−1) but also extend farther north and east, reflecting the prevailing surface southwesterlies. Changes (decreases) in rainfall are found only over the irrigated lands of west Mali. The decrease in rainfall can be explained by the large surface cooling and collapse of the boundary layer (by approximately 500 m). Both lead to a reduction in the triggering of convection as the convective inhibition, or negative buoyant energy, is never breached. Nevertheless, the new scheme and land cover allows for a novel line of research that can accurately reflect the effects of irrigation on climate and the surrounding environment using a dynamic vegetation model coupled to a regional climate model.


2020 ◽  
Author(s):  
Mingyue Zhang ◽  
Jürgen Helmert ◽  
Merja Tölle

<p>According to IPCC, Land use and Land Cover (LC) changes have a key role to adapt and mitigate future climate change aiming to stabilize temperature rise up to 2°C. Land surface change at regional scale is associated to global climate change, such as global warming. It influences the earth’s water and energy cycles via influences on the heat, moisture and momentum transfer, and on the chemical composition of the atmosphere. These effects show variations due to different LC types, and due to their spatial and temporal resolutions.  Thus, we incorporate a new time-varying land cover data set based on ESACCI into the regional climate model COSMO-CLM(v5.0). Further, the impact on the regional and local climate is compared to the standard operational LC data of GLC2000 and GlobCover 2009. Convection-permitting simulations with the three land cover data sets are performed at 0.0275° horizontal resolution over Europe for the time period from 1992 to 2015.</p><p>Overall, the simulation results show comparable agreement to observations. However, the simulation results based on GLC2000 and GlobCover 2009 (with 23 LC types) LC data sets show a fluctuation of 0.5K in temperature and 5% of precipitation. Even though the LC is classified into the same types, the difference in LC distribution and fraction leads to variations in climate simulation results. Using all of the 37 LC types of the ESACCI-LC data set show noticeable differences in distribution of temperature and precipitation compared to the simulations with GLC2000 and GlobCover 2009. Especially in forest areas, slight differences of the plant cover type (e.g. Evergreen or Deciduous) could result in up to 10% differences (increase or decrease) in temperature and precipitation over the simulation domain. Our results demonstrate how LC changes as well as different land cover type effect regional climate. There is need for proper and time-varying land cover data sets for regional climate model studies. The approach of including ESACCI-LC data set into regional climate model simulations also improved the external data generation system.</p><p>We anticipate this research to be a starting point for involving time-varying LC data sets into regional climate models. Furthermore, it will give us a possibility to quantify the effect of time-varying LC data on regional climate accurately.</p><p><strong>Acknowledgement</strong>:</p><p>1: Computational resources were made available by the German Climate Computing Center (DKRZ) through support from the Federal Ministry of Education and Research in Germany (BMBF). We acknowledge the funding of the German Research Foundation (DFG) through grant NR. 401857120.</p><p>2: Appreciation for the support of Jürg Luterbacher and Eva Nowatzki.</p><p> </p>


2003 ◽  
Vol 4 (3) ◽  
pp. 584-598 ◽  
Author(s):  
Christopher J. Anderson ◽  
Raymond W. Arritt ◽  
Zaitao Pan ◽  
Eugene S. Takle ◽  
William J. Gutowski ◽  
...  

2006 ◽  
Vol 19 (8) ◽  
pp. 1576-1585
Author(s):  
Zaitao Pan ◽  
Moti Segal ◽  
Charles Graves

Abstract Characteristics of surface water vapor deposition (WVD) over the continental United States under the present climate and a future climate scenario reflecting the mid-twenty-first-century increased greenhouse gas concentrations were evaluated by using a regional climate model forced by initial and lateral boundary conditions generated by a GCM. Simulated seasonal WVD frequency and daily amounts are presented and elaboration on their relation to potential surface dew/frost is also provided. The climate scenario showed in winter a noticeable decline in WVD frequency over snow-covered areas in the Midwest and over most of the elevated terrain in the western United States, contrasted by an overall increase in the eastern United States. In summer, a decline in frequency was simulated for most of the United States, particularly over the mountains in the west. A spatially mixed trend of change in the frequency was indicated in spring and fall. The trend of change in WVD amount resembled that of the frequency in summer, whereas a largely reversed relation was shown in winter. Quantitatively, changes in frequency and amount of WVD in the range of −30% to +30% generally were indicated for all locations and seasons, except for the western half of the United States, where the change was larger in summer. While areas passing a local statistical test on WVD changes ranged from 11% to 36% of land domain, the WVD differences as a whole field between present climate and future scenarios are significant.


Sign in / Sign up

Export Citation Format

Share Document