scholarly journals Turbulent flow structures and aeolian sediment transport over a barchan sand dune

2012 ◽  
Vol 39 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. F. S. Wiggs ◽  
C. M. Weaver
2020 ◽  
Author(s):  
Eliisa Lotsari ◽  
Maria Kämäri ◽  
Petteri Alho ◽  
Elina Kasvi

<p>Macro-turbulent flows during ice-covered and open-channel conditions, and their impacts on the total sediment transport, have not been studied widely in northern rivers. Previous studies have detected these processes, for example, only at the inlet area of one meander bend, or only during low discharge conditions. Thus, for understanding their impacts on the total sediment transport, it is needed to detect these macro-turbulent flow structures from a variety of cold region rivers, from multiple years, and also from a variety of different flow magnitude conditions. The pulses of high flow velocities related to these macro-turbulent structures may be important for determining the seasonal total sediment amount transported to the arctic ocean.</p><p> </p><p>The aim is 1) to detect the macro-turbulent flow in a meandering river at ice-covered low flow condition, and compare it to both high and low magnitude open-channel flow conditions. 2) Within a meander bend, the macro-turbulent flow will be compared between its inlet, apex and outlet sections. 3) The shear forces will be analyzed to detect the effects of macro-turbulent flow on potential sediment transport and channel development. The analyses are based on 5–10 minutes long moving boat Acoustic Doppler Current Profiler (ADCP) measurements from a meandering sub-arctic river. The measurements have been done in February and May during 2016–2019, and in September during 2016-2018. The preliminary results of this study are presented. The hypothesis is that the sediment transport potential of a sub-arctic river could be higher during all seasons than previously expected due to the pulses of high velocities related to macro-turbulent flow structures.</p>


2003 ◽  
Vol 28 (11) ◽  
pp. 1223-1241 ◽  
Author(s):  
Adrian Chappell ◽  
Grant McTainsh ◽  
John Leys ◽  
Craig Strong

2012 ◽  
Vol 38 (4) ◽  
pp. 413-420 ◽  
Author(s):  
Nancy L. Jackson ◽  
Karl F. Nordstrom

2017 ◽  
Vol 41 (5) ◽  
pp. 771-786 ◽  
Author(s):  
Ashif Perwez ◽  
Shreyak Shende ◽  
Rakesh Kumar

An experimental and numerical investigation is performed to study the effect of dimple and protrusion geometry on the heat transfer enhancement and the friction factor of surfaces with dimples and protrusions subjected to turbulent flow. The parameters used to compare the spherical dimples and protrusions are Nusselt Number, friction factor, and flow pattern. These parameters are obtained for a Reynolds number of 10500-60900. The spherical dimple results showed the greater heat transfer, which is about 6.97% higher and pressure loss which is 5.07% lower than the spherical protrusion. The realistic heat transfer augmentation capabilities of channels with dimples and protrusions can be studied from the experimental results. The comparison is made with respect to the smooth rectangular channel under the same flow and thermal boundary conditions. The numerical analysis is performed which shows the different vortex flow structures of the spherical dimples and protrusions channel.


Author(s):  
K M Ahtesham Hossain Raju ◽  
Shinji Sato

Response of sand dune when overwashed by tsunami or storm surge, is investigated by conducting small scale laboratory study. Dune consisting of initially wet sand and initially dry sand are tested for three different sand grain sizes. Overtopping of water and the corresponding sediment transport are analyzed. These data set can be used to validate mathematical models associated with dune sediment transport as well as prediction of dune profile.


Geomorphology ◽  
2010 ◽  
Vol 121 (1-2) ◽  
pp. 15-21 ◽  
Author(s):  
John A. Gillies ◽  
William G. Nickling ◽  
James King ◽  
Nicholas Lancaster

Sign in / Sign up

Export Citation Format

Share Document