scholarly journals Coastal Wetlands Effectively Sequester “Blue Carbon”

Eos ◽  
2017 ◽  
Author(s):  
Sarah Witman

Mangrove forests, salt marshes, seagrass beds, and the like are carbon storage treasure troves.

Author(s):  
Hideki Kokubu ◽  
Hideki Kokubu

Blue Carbon, which is carbon captured by marine organisms, has recently come into focus as an important factor for climate change initiatives. This carbon is stored in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds and salt marshes. The recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration. Therefore, it is necessary to improve scientific understanding of the mechanisms that stock control C in these ecosystems. However, the contribution of Blue Carbon sequestration to atmospheric CO2 in shallow waters is as yet unclear, since investigations and analysis technology are ongoing. In this study, Blue Carbon sinks by Zostera marina were evaluated in artificial (Gotenba) and natural (Matsunase) Zostera beds in Ise Bay, Japan. 12-hour continuous in situ photosynthesis and oxygen consumption measurements were performed in both areas by using chambers in light and dark conditions. The production and dead amount of Zostera marina shoots were estimated by standing stock measurements every month. It is estimated that the amount of carbon storage as Blue Carbon was 237g-C/m2/year and 197g-C/m2/year in the artificial and natural Zostera marina beds, respectively. These results indicated that Zostera marina plays a role towards sinking Blue Carbon.


Author(s):  
Hideki Kokubu ◽  
Hideki Kokubu

Blue Carbon, which is carbon captured by marine organisms, has recently come into focus as an important factor for climate change initiatives. This carbon is stored in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds and salt marshes. The recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration. Therefore, it is necessary to improve scientific understanding of the mechanisms that stock control C in these ecosystems. However, the contribution of Blue Carbon sequestration to atmospheric CO2 in shallow waters is as yet unclear, since investigations and analysis technology are ongoing. In this study, Blue Carbon sinks by Zostera marina were evaluated in artificial (Gotenba) and natural (Matsunase) Zostera beds in Ise Bay, Japan. 12-hour continuous in situ photosynthesis and oxygen consumption measurements were performed in both areas by using chambers in light and dark conditions. The production and dead amount of Zostera marina shoots were estimated by standing stock measurements every month. It is estimated that the amount of carbon storage as Blue Carbon was 237g-C/m2/year and 197g-C/m2/year in the artificial and natural Zostera marina beds, respectively. These results indicated that Zostera marina plays a role towards sinking Blue Carbon.


2021 ◽  
Author(s):  
Matteo Meli ◽  
Luigi Bruno

<p>Changes in land use represent, after fossil-fuel combustion, the greatest cause of greenhouse-gases emission into the atmosphere. Coastal wetlands, also referred as coastal blue carbon ecosystems (e.g. salt marshes, mangrove forests, seagrass meadows, swamps), represent one of the most powerful C sinks among the Earth’s ecosystems, being capable to sequester organic carbon (OC) at rates ca. 30-50 times higher than terrestrial forests. Historically, land reclamation for agriculture, farming and urban expansion, severely impacted coastal wetlands, causing their loss and degradation. Wetlands drainage lead to the oxidation of organic matter previously stored under anaerobic conditions and the release of CO<sub>2</sub> into the atmosphere. Only recently the critical role of blue carbon ecosystems in climate-change mitigation has been recognised, highlighting the importance of protecting and studying these precious environments.</p><p>In this work, changes in land use in the last two centuries are reconstructed through comparison with historical maps. At the beginning of the 19<sup>th</sup> century Napoleon Bonaparte requested the development of high-quality maps of occupied territories. Among these, the so-called ‘Carta del Ferrarese’ (CdF), completed between 1812 and 1814, is composed of 38 sheets and represents, to a scale of 1:15.000, 240.000 hectares of the Po lowlands, roughly corresponding to the present-day Ferrara district. The CdF, archived at the Kriegsarchiv in Vienna, is an extraordinary example among historical maps for its high quality and accuracy, which constitute a two-centuries-old reliable paleo-landscape picture.</p><p>Within the Historical Land Use Change research project, leaded by the Emilia-Romagna Statistical and GIS Service, the CdF was scanned, accurately georeferenced and orthorectified, showing a surprising generalized match with recent maps. More than 31.000 polygons were digitized in a GIS environment and interpreted on the basis of the European Corine Land Cover codes, properly modified for the land uses at the time.</p><p>Comparison with the recent land use analysis, carried out in 2014, highlights changes in land use, mainly related to land reclamation. Salt marshes and swamps, originally extended for 100.000 hectares, were reduced of about 85%, starting from 1861. Major phases of land reclamation occurred in 1870s and 1960s. Geochemical analyses on shallow samples (depth < 50 cm), depict OC content of artificially drained soils < 5% of the total volume. Soil texture testifies to the almost complete mineralization of OC after reclamation. Only recently drained soils show higher OC content, in the range of 10-15%.</p>


2018 ◽  
Vol 10 (8) ◽  
pp. 2818 ◽  
Author(s):  
Yi Li ◽  
Jianhui Qiu ◽  
Zheng Li ◽  
Yangfan Li

Highly productive coastal wetlands play an essential role in storing blue carbon as one of their ecosystem services, but they are increasingly jeopardized by intensive reclamation activities to facilitate rapid population growth and urbanization. Coastal reclamation causes the destruction and severe degradation of wetland ecosystems, which may affect their abilities to store blue carbon. To assist with international accords on blue carbon, we evaluated the dynamics of blue carbon storage in coastal wetlands under coastal reclamation in China. By integrating carbon density data collected from field measurement experiments and from the literature, an InVEST model, Carbon Storage and Sequestration was used to estimate carbon storage across the reclamation area between 1990 and 2015. The result is the first map capable of informing about blue carbon storage in coastal reclamation areas on a national scale. We found that more than 380,000 hectares of coastal wetlands were affected by reclamation, which resulted in the release of ca. 20.7 Tg of blue carbon. The carbon loss from natural wetlands to artificial wetlands accounted for 72.5% of total carbon loss, which highlights the major task in managing coastal sustainability. In addition, the top 20% of coastal wetlands in carbon storage loss covered 4.2% of the total reclamation area, which can be applied as critical information for coastal redline planning. We conclude that the release of blue carbon due to the conversion of natural wetlands exceeded the total carbon emission from energy consumption within the reclamation area. Implementing the Redline policy could guide the management of coastal areas resulting in greater resiliency regarding carbon emission and sustained ecosystem services.


2019 ◽  
Vol 70 (8) ◽  
pp. 1195 ◽  
Author(s):  
Nick C. Davidson ◽  
C. Max Finlayson

Global and regional areas and trends in area of unvegetated tidal flats, salt marshes, mangroves and seagrass beds are updated and corrected from those published in Davidson and Finlayson (2018). The global area of coastal wetlands is now estimated as a minimum of 1.42×106 km2, ~8.9–9.5% of an updated global wetland area of 15.0×106–16.0×106 km2.


2020 ◽  
Vol 12 (1) ◽  
pp. 469-497 ◽  
Author(s):  
Simon M. Cragg ◽  
Daniel A. Friess ◽  
Lucy G. Gillis ◽  
Stacey M. Trevathan-Tackett ◽  
Oliver M. Terrett ◽  
...  

More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems—salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose—an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.


2020 ◽  
Vol 43 (6) ◽  
pp. 1470-1488 ◽  
Author(s):  
Emma E. Dontis ◽  
Kara R. Radabaugh ◽  
Amanda R. Chappel ◽  
Christine E. Russo ◽  
Ryan P. Moyer

Sign in / Sign up

Export Citation Format

Share Document