scholarly journals Icy Interactions

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Jeremy Fyke ◽  
Olga Sergienko ◽  
Marcus L�fverstr�m ◽  
Stephen Price ◽  
Jan Lenaerts

Complex interactions between ice sheets and other components of the Earth system determine how ice sheets contribute to sea level rise.

Author(s):  
David J. A. Evans

Vast, majestic, and often stunningly beautiful, glaciers lock up some 10 per cent of the world’s fresh water. These great bodies of ice play an important part in the Earth system, carving landscapes and influencing climate on regional and hemispheric scales, as well as having a significant impact on global sea level. Glaciation: A Very Short Introduction offers an overview of glaciers and ice sheets as systems, considering the role of geomorphology and sedimentology in studying them, and their impacts on our planet in terms of erosional and depositional processes. Looking at our glaciers today, and their ongoing processes, it considers the extent to which we can use this knowledge in reconstructing and interpreting ancient glacial landscapes.


2021 ◽  
Author(s):  
Olivier Gagliardini ◽  
Fabien Gillet-Chaulet ◽  
Florent Gimbert

<p>Friction at the base of ice-sheets has been shown to be one of the largest uncertainty of model projections for the contribution of ice-sheet to future sea level rise. On hard beds, most of the apparent friction is the result of ice flowing over the bumps that have a size smaller than described by the grid resolution of ice-sheet models. To account for this friction, the classical approach is to replace this under resolved roughness by an ad-hoc friction law. In an imaginary world of unlimited computing resource and highly resolved bedrock DEM, one should solve for all bed roughnesses assuming pure sliding at the bedrock-ice interface. If such solutions are not affordable at the scale of an ice-sheet or even at the scale of a glacier, the effect of small bumps can be inferred using synthetical periodic geometry. In this presentation,<span>  </span>beds are constructed using the superposition of up to five bed geometries made of sinusoidal bumps of decreasing wavelength and amplitudes. The contribution to the total friction of all five beds is evaluated by inverse methods using the most resolved solution as observation. It is shown that small features of few meters can contribute up to almost half of the total friction, depending on the wavelengths and amplitudes distribution. This work also confirms that the basal friction inferred using inverse method<span>  </span>is very sensitive to how the bed topography is described by the model grid, and therefore depends on the size of the model grid itself.<span> </span></p>


2019 ◽  
Vol 55 (1) ◽  
pp. 260
Author(s):  
Constantinos Perisoratis

The climate changes are necessarily related to the increase of the Earth’s temperature, resulting in a sea level rise. Such continuous events, were taking place with minor and greater intensity, during the alternation of warm and cool periods in the Earth during the Late Quaternary and the Holocene periods. However, a particularly significant awareness has taken place in the scientific community, and consequently in the greater public, in the last decades: that a climatic change will take place soon, or it is on-going, and that therefore it is important to undertake drastic actions. However, such a climatic change has not been recorded yet, and hence the necessary actions are not required, for the time being.


2020 ◽  
Vol 14 (3) ◽  
pp. 833-840 ◽  
Author(s):  
Heiko Goelzer ◽  
Violaine Coulon ◽  
Frank Pattyn ◽  
Bas de Boer ◽  
Roderik van de Wal

Abstract. Estimating the contribution of marine ice sheets to sea-level rise is complicated by ice grounded below sea level that is replaced by ocean water when melted. The common approach is to only consider the ice volume above floatation, defined as the volume of ice to be removed from an ice column to become afloat. With isostatic adjustment of the bedrock and external sea-level forcing that is not a result of mass changes of the ice sheet under consideration, this approach breaks down, because ice volume above floatation can be modified without actual changes in the sea-level contribution. We discuss a consistent and generalised approach for estimating the sea-level contribution from marine ice sheets.


2020 ◽  
Author(s):  
Thomas Kleiner ◽  
Jeremie Schmiedel ◽  
Angelika Humbert

<p>Ice sheets constitute the largest and most uncertain potential source of future sea-level rise. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) brings together a consortium of international ice sheet and climate models to explore the contribution from the Greenland and Antarctic ice sheets to future sea-level rise.</p> <p>We use the Parallel Ice Sheet Model (PISM, pism-docs.org) to carry out spinup and projection simulations for the Antarctic Ice Sheet. Our treatment of the ice-ocean boundary condition previously based on 3D ocean temperatures (initMIP-Antarctica) has been adopted to use the ISMIP6 parameterisation and 3D ocean forcing fields (temperature and salinity) according to the ISMIP6 protocol.</p> <p>In this study, we analyse the impact of the choices made during the model initialisation procedure on the initial state. We present the AWI PISM results of the ISMIP6 projection simulations and investigate the ice sheet response for individual basins. In the analysis, we distinguish between the local and non-local ice shelf basal melt parameterisation.</p>


2020 ◽  
Author(s):  
Andrew Shepherd ◽  

<p>In recent decades, the Antarctic and Greenland Ice Sheets have been major contributors to global sea-level rise and are expected to be so in the future. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite records of changes in polar ice sheet volume, flow and gravitational potential to produce a reconciled estimate of their mass balance. <strong>Since the early 1990’s, ice losses from Antarctica and Greenland have caused global sea-levels to rise by 18.4 millimetres, on average, and there has been a sixfold increase in the volume of ice loss over time. Of this total, 41 % (7.6 millimetres) originates from Antarctica and 59 % (10.8 millimetres) is from Greenland. In this presentation, we compare our reconciled estimates of Antarctic and Greenland ice sheet mass change to IPCC projection of sea level rise to assess the model skill in predicting changes in ice dynamics and surface mass balance.  </strong>Cumulative ice losses from both ice sheets have been close to the IPCC’s predicted rates for their high-end climate warming scenario, which forecast an additional 170 millimetres of global sea-level rise by 2100 when compared to their central estimate.</p>


Sign in / Sign up

Export Citation Format

Share Document