scholarly journals Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer

2019 ◽  
Vol 124 (10) ◽  
pp. 5629-5649 ◽  
Author(s):  
Jinjian Li ◽  
Qianyun Liu ◽  
Yongjie Li ◽  
Tengyu Liu ◽  
Dandan Huang ◽  
...  
2015 ◽  
Vol 15 (20) ◽  
pp. 11807-11833 ◽  
Author(s):  
W. W. Hu ◽  
P. Campuzano-Jost ◽  
B. B. Palm ◽  
D. A. Day ◽  
A. M. Ortega ◽  
...  

Abstract. Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.


2013 ◽  
Vol 6 (11) ◽  
pp. 3271-3280 ◽  
Author(s):  
L. R. Williams ◽  
L. A. Gonzalez ◽  
J. Peck ◽  
D. Trimborn ◽  
J. McInnis ◽  
...  

Abstract. We have designed and characterized a new inlet and aerodynamic lens for the Aerodyne aerosol mass spectrometer (AMS) that transmits particles between 80 nm and more than 3 μm in vacuum aerodynamic diameter. The design of the inlet and lens was optimized with computational fluid dynamics (CFD) modeling of particle trajectories. Major changes include a redesigned critical orifice holder and valve assembly, addition of a relaxation chamber behind the critical orifice, and a higher lens operating pressure. The transmission efficiency of the new inlet and lens was characterized experimentally with size-selected particles. Experimental measurements are in good agreement with the calculated transmission efficiency.


2005 ◽  
Vol 39 (8) ◽  
pp. 760-770 ◽  
Author(s):  
N. Takegawa ◽  
Y. Miyazaki ◽  
Y. Kondo ◽  
Y. Komazaki ◽  
T. Miyakawa ◽  
...  

2015 ◽  
Vol 32 (6) ◽  
pp. 877-888 ◽  
Author(s):  
Junke Zhang ◽  
Yuesi Wang ◽  
Xiaojuan Huang ◽  
Zirui Liu ◽  
Dongsheng Ji ◽  
...  

2015 ◽  
Vol 299 ◽  
pp. 156-174 ◽  
Author(s):  
Stefanos Samaras ◽  
Doina Nicolae ◽  
Christine Böckmann ◽  
Jeni Vasilescu ◽  
Ioannis Binietoglou ◽  
...  

2017 ◽  
Author(s):  
Li-Ming Cao ◽  
Xiao-Feng Huang ◽  
Yuan-Yuan Li ◽  
Min Hu ◽  
Ling-Yan He

Abstract. Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a TD-AMS (Thermo-Denuder – Aerosol Mass Spectrometer) system was deployed to study the volatility of non-refractory PM1 species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7 ± 20.1 μg m−3, with organics being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with an MFR (mass fraction remaining) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from 50 to 200 °C), with an evaporation rate of 0.45 %·°C1. Five subtypes of OA were resolved from total OAs by PMF for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass burning OA (BBOA, 8.9 %) and two oxygenated OAs (OOA): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA species presented different volatilities; the volatility sequence of OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99). The volatility sequence of OA components suggested that HOA, rather than BBOA or COA, could be a potentially important source of LO-OOA through the oxidizing process of Evaporation – Oxidation in gas phase – Condensation. The results above can contribute to the understanding of the formation and ageing of submicron aerosols in the atmosphere and will help to constrain aerosol modelling inputs.


2009 ◽  
Vol 9 (11) ◽  
pp. 3709-3720 ◽  
Author(s):  
M. Dall'Osto ◽  
R. M. Harrison ◽  
H. Coe ◽  
P. I. Williams ◽  
J. D. Allan

Abstract. Nitrate aerosols make a very major contribution to PM2.5 and PM10 in western Europe, but their sources and pathways have not been fully elucidated. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) and a Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) were deployed in an urban background location in London, UK, collecting data as part of the REPARTEE-I experiment. During REPARTEE-I, daily PM10 concentrations ranged up to 43.6 μg m−3, with hourly nitrate concentrations (measured by AMS) of up to 5.3 μg m−3. The application of the ART-2a neural network algorithm to the ATOFMS data characterised the nitrate particles as occurring in two distinct clusters (i.e. particle types). The first (33.6% of particles by number) appeared to be locally produced in urban locations during nighttime, whilst the second (22.8% of particles by number) was regionally transported from continental Europe. Nitrate in locally produced aerosol was present mainly in particles smaller than 300 nm, whilst the regional nitrate presented a coarser mode, peaking at 600 nm. In both aerosol types, nitrate was found to be internally mixed with sulphate, ammonium, elemental and organic carbon. Nitrate in regional aerosol appeared to be more volatile than that locally formed. During daytime, a core of the regionally transported nitrate aerosol particle type composed of organic carbon and sulphate was detected.


Sign in / Sign up

Export Citation Format

Share Document