scholarly journals Scale Dependence of Cloud Microphysical Response to Turbulent Entrainment and Mixing

2018 ◽  
Vol 10 (11) ◽  
pp. 2777-2785 ◽  
Author(s):  
Bipin Kumar ◽  
Paul Götzfried ◽  
Neethi Suresh ◽  
Jörg Schumacher ◽  
Raymond A. Shaw
2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


Author(s):  
Jinghui Zhang ◽  
François Gillet ◽  
Sándor Bartha ◽  
Juha Mikael Alatalo ◽  
Idoia Biurrun ◽  
...  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Djuna Croon ◽  
Oliver Gould ◽  
Philipp Schicho ◽  
Tuomas V. I. Tenkanen ◽  
Graham White

Abstract We critically examine the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions, using the Standard Model effective field theory as our guide. In the usual daisy-resummed approach, we find large uncertainties due to renormalisation scale dependence, which amount to two to three orders-of-magnitude uncertainty in the peak gravitational wave amplitude, relevant to experiments such as LISA. Alternatively, utilising dimensional reduction in a more sophisticated perturbative approach drastically reduces this scale dependence, pushing it to higher orders. Further, this approach resolves other thorny problems with daisy resummation: it is gauge invariant which is explicitly demonstrated for the Standard Model, and avoids an uncontrolled derivative expansion in the bubble nucleation rate.


2016 ◽  
Vol 1 (6) ◽  
Author(s):  
D. Fiscaletti ◽  
G. E. Elsinga ◽  
A. Attili ◽  
F. Bisetti ◽  
O. R. H. Buxton

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Petr Hellinger ◽  
Andrea Verdini ◽  
Simone Landi ◽  
Emanuele Papini ◽  
Luca Franci ◽  
...  

1993 ◽  
Vol 400 (1-3) ◽  
pp. 240-266 ◽  
Author(s):  
K.J. Eskola

Icarus ◽  
2013 ◽  
Vol 226 (1) ◽  
pp. 52-66 ◽  
Author(s):  
Mikhail A. Kreslavsky ◽  
James W. Head ◽  
Gregory A. Neumann ◽  
Margaret A. Rosenburg ◽  
Oded Aharonson ◽  
...  

2007 ◽  
Vol 46 (7) ◽  
pp. 1067-1079 ◽  
Author(s):  
M. Kanda ◽  
M. Kanega ◽  
T. Kawai ◽  
R. Moriwaki ◽  
H. Sugawara

Abstract Urban climate experimental results from the Comprehensive Outdoor Scale Model (COSMO) were used to estimate roughness lengths for momentum and heat. Two different physical scale models were used to investigate the scale dependence of the roughness lengths; the large scale model included an aligned array of 1.5-m concrete cubes, and the small scale model had a geometrically similar array of 0.15-m concrete cubes. Only turbulent data from the unstable boundary layers were considered. The roughness length for momentum relative to the obstacle height was dependent on wind direction, but the scale dependence was not evident. Estimated values agreed well with a conventional morphometric relationship. The logarithm of the roughness length for heat relative to the obstacle height depended on the scale but was insensitive to wind direction. COSMO data were used successfully to regress a theoretical relationship between κB−1, the logarithmic ratio of roughness length for momentum to heat, and Re*, the roughness Reynolds number. Values of κB−1 associated with Re* for three different urban sites from previous field experiments were intercompared. A surprising finding was that, even though surface geometry differed from site to site, the regressed function agreed with data from the three urban sites as well as with the COSMO data. Field data showed that κB−1 values decreased as the areal fraction of vegetation increased. The observed dependency of the bulk transfer coefficient on atmospheric stability in the COSMO data could be reproduced using the regressed function of Re* and κB−1, together with a Monin–Obukhov similarity framework.


Sign in / Sign up

Export Citation Format

Share Document