scholarly journals Temperature Spatiotemporal Correlation Scales in the Brazil‐Malvinas Confluence from High‐Resolution In Situ and Remote Sensing Data

2019 ◽  
Vol 46 (22) ◽  
pp. 13234-13243 ◽  
Author(s):  
Dorleta Orúe‐Echevarría ◽  
Paola Castellanos ◽  
Joel Sans ◽  
Mikhail Emelianov ◽  
Ignasi Vallès‐Casanova ◽  
...  
Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 14
Author(s):  
Gordana Kaplan ◽  
Zehra Yigit Avdan ◽  
Serdar Goncu ◽  
Ugur Avdan

In water resources management, remote sensing data and techniques are essential in watershed characterization and monitoring, especially when no data are available. Water quality is usually assessed through in-situ measurements that require high cost and time. Water quality parameters help in decision making regarding the further use of water-based on its quality. Turbidity is an important water quality parameter and an indicator of water pollution. In the past few decades, remote sensing has been widely used in water quality research. In this study, we compare turbidity parameters retrieved from a high-resolution image with in-situ measurements collected from Borabey Lake, Turkey. Here, the use of RapidEye-3 images (5 m-resolution) allows for detailed assessment of spatio-temporal evaluation of turbidity, through the normalized difference turbidity index (NDTI). The turbidity results were then compared with data from 21 in-situ measurements collected in the same period. The actual water turbidity measurements showed high correlation with the estimated NDTI mean values with an R2 of 0.84. The research findings support the use of remote sensing data of RadipEye-3 to estimate water quality parameters in small water areas. For future studies, we recommend investigating different water quality parameters using high-resolution remote sensing data.


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document