scholarly journals Juxtaposition of Western Pacific Subtropical High on Asian Summer Monsoon Shapes Subtropical East Asian Precipitation

2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Hai Xu ◽  
Yonaton Goldsmith ◽  
Jianghu Lan ◽  
Liangcheng Tan ◽  
Xulong Wang ◽  
...  
2015 ◽  
Vol 28 (7) ◽  
pp. 2873-2883 ◽  
Author(s):  
Shinji Matsumura ◽  
Shiori Sugimoto ◽  
Tomonori Sato

Abstract The summer western Pacific subtropical high (WPSH) has intensified during the past three decades. However, the underlying mechanism is not yet well understood. Here, it is shown that baiu rainband activity in midsummer, which is part of the East Asian summer monsoon, plays an important role in recent intensification in the WPSH along the baiu rainband. In contrast with the WPSH, the summer Okhotsk high, which is located to the north of the baiu rainband, has weakened during the past three decades. The north–south contrasting changes between the two highs reflect a response to northward-moved and enhanced baiu heating, which intensifies the upper-tropospheric ridge, resulting in the baroclinic intensification of the WPSH. Regional climate model experiments also support the observational analysis. Therefore, baiu convective activity in midsummer can act as a major driver for the WPSH intensification. The results here suggest that the mechanism intensifying the summer North Pacific subtropical high clearly differs between the western and eastern Pacific.


2016 ◽  
Vol 29 (13) ◽  
pp. 5027-5040 ◽  
Author(s):  
Jie Cao ◽  
Shu Gui ◽  
Qin Su ◽  
Yali Yang

Abstract The interannual zonal movement of the interface between the Indian summer monsoon and the East Asian summer monsoon (IIE), associated with the spring sea surface temperature (SST) seesaw mode (SSTSM) over the tropical Indian Ocean (TIO) and the tropical central-western Pacific (TCWP), is studied for the period 1979–2008. The observational analysis is based on Twentieth Century Reanalysis data (version 2) of atmospheric circulations, Extended Reconstructed SST data (version 3), and the Climate Prediction Center Merged Analysis of Precipitation. The results indicate that the IIE’s zonal movement is significantly and persistently correlated with the TIO–TCWP SSTSM, from spring to summer. The results of two case studies resemble those obtained by regression analysis. Experiments using an atmospheric general circulation model (ECHAM6) substantiate the key physical processes revealed in the observational analysis. When warmer (colder) SSTs appear in the TIO and colder (warmer) SSTs occur in the TCWP, the positive (negative) SSTSM forces anomalous easterly (westerly) winds over the Bay of Bengal (BOB), South China Sea (SCS), and western North Pacific (WNP). The anomalous easterly (westerly) winds further result in a weakened (strengthened) southwest summer monsoon over the BOB and a strengthened (weakened) southeast summer monsoon over the SCS and WNP. This causes the IIE to shift farther eastward (westward) than normal.


2014 ◽  
Vol 27 (11) ◽  
pp. 3966-3981 ◽  
Author(s):  
Chen Li ◽  
Shuanglin Li

Abstract The correlations among the summer, low-level, cross-equatorial flows (CEFs) over the Indian–west Pacific Ocean region on the interannual time scale are investigated by using both the NCEP–NCAR reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) datasets. A significant negative correlation (seesaw) has been illustrated between the Somali CEF and the three CEFs north of Australia (the South China Sea, Celebes Sea, and New Guinea; they are referred to in combination as the Australian CEF). A seesaw index is thus defined with a higher (lower) value representing an intensified (weakened) Somali CEF but a weakened (intensified) Australian CEF. The connection of the seesaw with the East Asian summer monsoon (EASM) is then investigated. The results suggest that an enhanced seesaw corresponds to an intensified EASM with more rainfall in north China, the Yellow River valley, and the upper reach of the Yangtze River. The seesaw reflects the opposite covariability between the two atmospheric action centers in the Southern Hemisphere, Mascarene subtropical high, and Australian subtropical high. Whether the seesaw–EASM connection is influenced by El Niño–Southern Oscillation (ENSO) or the Indian Ocean SST dipole mode (IOD) is analyzed. The results remain unchanged when the ENSO- or IOD-related signals are excluded, although ENSO exerts a significant influence. This implies an additional predictability for the EASM from the CEF seesaw.


2009 ◽  
Vol 137 (1) ◽  
pp. 137-160 ◽  
Author(s):  
Ngar-Cheung Lau ◽  
Jeffrey J. Ploshay

Abstract A 20-yr simulation using a global atmospheric general circulation model with a resolution of 0.5° latitude × 0.625° longitude is compared with observational findings. The primary goal of this survey is to assess the model performance in reproducing various summertime phenomena related to the continental-scale Asian monsoon in general, and the regional-scale East Asian monsoon in particular. In both model and observed atmospheres, the seasonal march of the precipitation centers associated with the Asian summer monsoon is characterized by onsets occurring earliest over the southeastern Bay of Bengal, followed by rapid northeastward advances over Indochina, the South China Sea–Philippine Sea and the western Pacific, northward evolution in the East Asian sector, as well as northwestward development over the Bay of Bengal, the Indian subcontinent, and the Arabian Sea. This onset sequence is accompanied by southwesterly low-level flows over the rainy regions, as well as northwestward migration of the 200-mb Tibetan anticyclone. Analysis of the heat sources and sinks in various regions illustrates the prominent role of condensational heating in the local energy budget during the mature phases of monsoon development. In accord with observations, the simulated monsoon rains in the East Asian sector are organized about zonally elongated “mei-yu–baiu” (plum rain) systems. These precipitation features advance to higher latitudes during the June–July period, in conjunction with displacements of the axis of the low-level anticyclone over the subtropical western Pacific. A detailed case study is performed on a prominent rainy episode in the simulation. The model is capable of reproducing the observed intense gradients in temperature, humidity, and moist static stability in the vicinity of the mei-yu–baiu front, as well as the spatial relationships between the rainband and the three-dimensional flow field. The axis of the mei-yu–baiu rainband in this event is aligned with the trajectory of a succession of mesoscale cyclonic vortices, which originate from southwestern China and travel northeastward over the Yangtze River basin.


2020 ◽  
Vol 33 (22) ◽  
pp. 9721-9733
Author(s):  
Chao He ◽  
Wen Zhou

AbstractSoutherly wind in the lower troposphere is an essential feature of East Asian summer monsoon (EASM) circulation, which is reported to be enhanced under global warming scenarios and interglacial epochs. Based on an analysis of an ensemble of CMIP6 models, this study shows that the magnitude of intensification of the EASM circulation is much smaller under global warming scenarios than during interglacial epochs. Distinct changes in the western North Pacific subtropical high (WNPSH) are responsible for the different responses of the EASM circulation. The WNPSH is substantially enhanced during interglacial epochs, which acts to strengthen the southerly wind associated with the EASM on the western flank of the WNPSH. However, the change in the WNPSH is insignificant and cannot strengthen the EASM under global warming scenarios, and the weakly enhanced EASM circulation may be a direct response to intensified heating over the Tibetan Plateau. The land–ocean thermal contrast explains the different responses of the WNPSH. During interglacial epochs, the summertime surface warming over the subtropical North Pacific is much weaker than over Eurasia due to the large thermal inertia of the ocean to increased insolation, and the WNPSH is intensified as a response to the suppressed latent heating over the subtropical North Pacific. The fast response of the WNPSH to abrupt quadrupling of CO2 without sufficient ocean warming is an analog to the interglacial epochs, but it is offset by the effect of slow oceanic warming, resulting in an insignificant change of the WNPSH under global warming scenarios.


Sign in / Sign up

Export Citation Format

Share Document