scholarly journals Interannual Seesaw between the Somali and the Australian Cross-Equatorial Flows and its Connection to the East Asian Summer Monsoon

2014 ◽  
Vol 27 (11) ◽  
pp. 3966-3981 ◽  
Author(s):  
Chen Li ◽  
Shuanglin Li

Abstract The correlations among the summer, low-level, cross-equatorial flows (CEFs) over the Indian–west Pacific Ocean region on the interannual time scale are investigated by using both the NCEP–NCAR reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) datasets. A significant negative correlation (seesaw) has been illustrated between the Somali CEF and the three CEFs north of Australia (the South China Sea, Celebes Sea, and New Guinea; they are referred to in combination as the Australian CEF). A seesaw index is thus defined with a higher (lower) value representing an intensified (weakened) Somali CEF but a weakened (intensified) Australian CEF. The connection of the seesaw with the East Asian summer monsoon (EASM) is then investigated. The results suggest that an enhanced seesaw corresponds to an intensified EASM with more rainfall in north China, the Yellow River valley, and the upper reach of the Yangtze River. The seesaw reflects the opposite covariability between the two atmospheric action centers in the Southern Hemisphere, Mascarene subtropical high, and Australian subtropical high. Whether the seesaw–EASM connection is influenced by El Niño–Southern Oscillation (ENSO) or the Indian Ocean SST dipole mode (IOD) is analyzed. The results remain unchanged when the ENSO- or IOD-related signals are excluded, although ENSO exerts a significant influence. This implies an additional predictability for the EASM from the CEF seesaw.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Fuxing Li ◽  
Dong Chen ◽  
Qiuhong Tang ◽  
Wenhong Li ◽  
Xuejun Zhang

The sensitivity of hydrologic variables in East China, that is, runoff, precipitation, evapotranspiration, and soil moisture to the fluctuation of East Asian summer monsoon (EASM), is evaluated by the Mann-Kendall correlation analysis on a spatial resolution of 1/4° in the period of 1952–2012. The results indicate remarkable spatial disparities in the correlation between the hydrologic variables and EASM. The regions in East China susceptible to hydrological change due to EASM fluctuation are identified. When the standardized anomaly of intensity index of EASM (EASMI) is above 1.00, the runoff of Haihe basin has increased by 49% on average, especially in the suburb of Beijing and Hebei province where the runoff has increased up to 105%. In contrast, the runoff in the basins of Haihe and Yellow River has decreased by about 27% and 17%, respectively, when the standardized anomaly of EASMI is below −1.00, which has brought severe drought to the areas since mid-1970s. The study can be beneficial for national or watershed agencies developing adaptive water management strategies in the face of global climate change.


2012 ◽  
Vol 27 (4) ◽  
pp. 1017-1030 ◽  
Author(s):  
Ke Fan ◽  
Ying Liu ◽  
HuoPo Chen

Abstract East Asian summer monsoon (EASM) prediction is difficult because of the summer monsoon’s weak and unstable linkage with El Niño–Southern Oscillation (ENSO) interdecadal variability and its complicated association with high-latitude processes. Two statistical prediction schemes were developed to include the interannual increment approach to improve the seasonal prediction of the EASM’s strength. The schemes were applied to three models [i.e., the Centre National de Recherches Météorologiques (CNRM), the Met Office (UKMO), and the European Centre for Medium-Range Weather Forecasts (ECMWF)] and the Multimodel Ensemble (MME) from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) results for 1961–2001. The inability of the three dynamical models to reproduce the weakened East Asian monsoon at the end of the 1970s leads to low prediction ability for the interannual variability of the EASM. Therefore, the interannual increment prediction approach was applied to overcome this issue. Scheme I contained the EASM in the form of year-to-year increments as a predictor that is derived from the direct outputs of the models. Scheme II contained two predictors: both the EASM and also the western North Pacific circulation in the form of year-to-year increments. Both the cross-validation test and the independent hindcast experiments showed that the two prediction schemes have a much better prediction ability for the EASM than does the original scheme. This study provides an efficient approach for predicting the EASM.


2015 ◽  
Vol 28 (24) ◽  
pp. 9977-9996 ◽  
Author(s):  
Guijie Zhao ◽  
Gang Huang ◽  
Renguang Wu ◽  
Weichen Tao ◽  
Hainan Gong ◽  
...  

Abstract The East Asian summer monsoon (EASM) and its variability involve circulation systems in both the tropics and midlatitudes as well as in both the lower and upper troposphere. Considering this fact, a new EASM index (NEWI) is proposed based on 200-hPa zonal wind, which takes into account wind anomalies in the southern (about 5°N), middle (about 20°N), and northern areas (about 35°N) of East Asia. The NEWI can capture the interannual EASM-related climate anomalies and the interdecadal variability well. Compared to previous indices, the NEWI shows a better performance in describing precipitation and air temperature variations over East Asia. It can also show distinct climate anomalous features in early and late summer. The NEWI is tightly associated with the East Asian–Pacific or the Pacific–Japan teleconnection, suggesting a possible role of internal dynamics in the EASM variability. Meanwhile, the NEWI is significantly linked to El Niño–Southern Oscillation and tropical Indian Ocean sea surface temperature anomalies. Furthermore, the NEWI is highly predictable in the ENSEMBLES models, indicating its advantage for operational prediction of the EASM. The physical mechanism of the EASM variability as represented by the NEWI is also explicit. Both warm advection anomalies of temperature by anomalous westerly winds and the advection of anomalous positive relative vorticity by northerly basic winds cause anomalous ascending motion over the mei-yu–changma–baiu rainfall area, and vice versa over the South China Sea area. Hence, this NEWI would be a good choice to study, monitor, and predict the EASM.


2020 ◽  
Vol 33 (22) ◽  
pp. 9721-9733
Author(s):  
Chao He ◽  
Wen Zhou

AbstractSoutherly wind in the lower troposphere is an essential feature of East Asian summer monsoon (EASM) circulation, which is reported to be enhanced under global warming scenarios and interglacial epochs. Based on an analysis of an ensemble of CMIP6 models, this study shows that the magnitude of intensification of the EASM circulation is much smaller under global warming scenarios than during interglacial epochs. Distinct changes in the western North Pacific subtropical high (WNPSH) are responsible for the different responses of the EASM circulation. The WNPSH is substantially enhanced during interglacial epochs, which acts to strengthen the southerly wind associated with the EASM on the western flank of the WNPSH. However, the change in the WNPSH is insignificant and cannot strengthen the EASM under global warming scenarios, and the weakly enhanced EASM circulation may be a direct response to intensified heating over the Tibetan Plateau. The land–ocean thermal contrast explains the different responses of the WNPSH. During interglacial epochs, the summertime surface warming over the subtropical North Pacific is much weaker than over Eurasia due to the large thermal inertia of the ocean to increased insolation, and the WNPSH is intensified as a response to the suppressed latent heating over the subtropical North Pacific. The fast response of the WNPSH to abrupt quadrupling of CO2 without sufficient ocean warming is an analog to the interglacial epochs, but it is offset by the effect of slow oceanic warming, resulting in an insignificant change of the WNPSH under global warming scenarios.


2015 ◽  
Vol 28 (7) ◽  
pp. 2873-2883 ◽  
Author(s):  
Shinji Matsumura ◽  
Shiori Sugimoto ◽  
Tomonori Sato

Abstract The summer western Pacific subtropical high (WPSH) has intensified during the past three decades. However, the underlying mechanism is not yet well understood. Here, it is shown that baiu rainband activity in midsummer, which is part of the East Asian summer monsoon, plays an important role in recent intensification in the WPSH along the baiu rainband. In contrast with the WPSH, the summer Okhotsk high, which is located to the north of the baiu rainband, has weakened during the past three decades. The north–south contrasting changes between the two highs reflect a response to northward-moved and enhanced baiu heating, which intensifies the upper-tropospheric ridge, resulting in the baroclinic intensification of the WPSH. Regional climate model experiments also support the observational analysis. Therefore, baiu convective activity in midsummer can act as a major driver for the WPSH intensification. The results here suggest that the mechanism intensifying the summer North Pacific subtropical high clearly differs between the western and eastern Pacific.


2017 ◽  
Author(s):  
Bo Huang ◽  
Ulrich Cubasch ◽  
Christopher Kadow

Abstract. The East Asian summer monsoon (EASM) is an important part of the global climate system and plays a vital role in the Asian climate. Its sub-seasonal-to-seasonal predictability is a long-standing issue within the monsoon scientist community. In this study, we analyse the seasonal (with six months lead time) prediction skill of the EASM rainfall and its associated general circulation in non-initialised and initialised simulations for the years 1979–2005 performed by six prediction systems (i.e., the BCC-CSM1-1, the CanCM4, the GFDL-CM2p1, the HadCM3, the MIROC5 and the MPI-ESM-LR) from the Coupled Model Intercomparison Project phase 5 (CMIP 5). We find that the simulation of the zonal wind is significantly improved in initialised simulations compared to non-initialized simulations. Based on the knowledge that zonal wind indices can be used as potential predictors for the EASM, we selected an EASM index based upon the zonal wind for further analysis. The assessment show that the GFDL-CM2p1 and the MIROC5 add prediction skill in simulating the EASM index with initialisation, the BCC-CSM1-1, the CanCM4, and the MPI-ESM-LR change the skill insignificantly, and the HadCM3 indicates a decreased skill score. The different response to the initialisation can be traced back to the ability of the models to capture the ENSO (El Niño-Southern Oscillation)-EASM coupled mode, particularly the Southern Oscillation-EASM coupled mode. In summary, we find that the GFDL-CM2p1 and the MIROC5 are capable to predict the EASM on a seasonal time-scale after initialisation.


Sign in / Sign up

Export Citation Format

Share Document