scholarly journals Using Sea Surface Temperature Observations to Constrain Upper Ocean Properties in an Arctic Sea Ice‐Ocean Data Assimilation System

2019 ◽  
Vol 124 (7) ◽  
pp. 4727-4743
Author(s):  
Xi Liang ◽  
Martin Losch ◽  
Lars Nerger ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
...  
The Sea ◽  
2015 ◽  
Vol 20 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Ji Hye Kim ◽  
Hyun-Min Eom ◽  
Jong-Kuk Choi ◽  
Sang-Min Lee ◽  
Young-Ho Kim ◽  
...  

2019 ◽  
Vol 36 (7) ◽  
pp. 1255-1266 ◽  
Author(s):  
Mathieu Hamon ◽  
Eric Greiner ◽  
Pierre-Yves Le Traon ◽  
Elisabeth Remy

AbstractSatellite altimetry is one of the main sources of information used to constrain global ocean analysis and forecasting systems. In addition to in situ vertical temperature and salinity profiles and sea surface temperature (SST) data, sea level anomalies (SLA) from multiple altimeters are assimilated through the knowledge of a surface reference, the mean dynamic topography (MDT). The quality of analyses and forecasts mainly depends on the availability of SLA observations and on the accuracy of the MDT. A series of observing system evaluations (OSEs) were conducted to assess the relative importance of the number of assimilated altimeters and the accuracy of the MDT in a Mercator Ocean global 1/4° ocean data assimilation system. Dedicated tools were used to quantify impacts on analyzed and forecast sea surface height and temperature/salinity in deeper layers. The study shows that a constellation of four altimeters associated with a precise MDT is required to adequately describe and predict upper-ocean circulation in a global 1/4° ocean data assimilation system. Compared to a one-altimeter configuration, a four-altimeter configuration reduces the mean forecast error by about 30%, but the reduction can reach more than 80% in western boundary current (WBC) regions. The use of the most recent MDT updates improves the accuracy of analyses and forecasts to the same extent as assimilating a fourth altimeter.


2018 ◽  
Vol 31 (6) ◽  
pp. 2233-2252 ◽  
Author(s):  
Kaiqiang Deng ◽  
Song Yang ◽  
Mingfang Ting ◽  
Chundi Hu ◽  
Mengmeng Lu

The mid-Pacific trough (MPT), occurring in the upper troposphere during boreal summer, acts as an atmospheric bridge connecting the climate variations over Asia, the Pacific, and North America. The first (second) mode of empirical orthogonal function analysis of the MPT, which accounts for 20.3% (13.4%) of the total variance, reflects a change in its intensity on the southwestern (northeastern) portion of the trough. Both modes are significantly correlated with the variability of tropical Pacific sea surface temperature (SST). Moreover, the first mode is affected by Atlantic SST via planetary waves that originate from the North Atlantic and propagate eastward across the Eurasian continent, and the second mode is influenced by the Arctic sea ice near the Bering Strait by triggering an equatorward wave train over the northeast Pacific. A stronger MPT shown in the first mode is significantly linked to drier and warmer conditions in the Yangtze River basin, southern Japan, and the northern United States and wetter conditions in South Asia and northern China, while a stronger MPT shown in the second mode is associated with a drier and warmer southwestern United States. In addition, an intensified MPT (no matter whether in the southwestern or the northeastern portion) corresponds to more tropical cyclones (TCs) over the western North Pacific (WNP) and fewer TCs over the eastern Pacific (EP) in summer, which is associated with the MPT-induced ascending and descending motions over the WNP and the EP, respectively.


Sign in / Sign up

Export Citation Format

Share Document